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4.5. * The Riemann ⇣-function

Example 4.21 justifies the following definition.

Definition 4.22. The Riemann ⇣-function is defined for 1 < s < 1 by

⇣(s) =
1X

n=1

1

ns

For instance, as stated in Example 4.20, we have ⇣(2) = ⇡2/6. In fact, Euler
(1755) discovered a general formula for the value ⇣(2n) of the ⇣-function at even
natural numbers,

⇣(2n) = (�1)n+1 (2⇡)
2nB2n

2(2n)!
, n = 1, 2, 3, . . . ,

where the coe�cients B2n are the Bernoulli numbers (see Example 10.19). In
particular,

⇣(4) =
⇡4

90
, ⇣(6) =

⇡6

945
, ⇣(8) =

⇡8

9450
, ⇣(10) =

⇡10

93555
.

On the other hand, the values of the ⇣-function at odd natural numbers are harder
to study. For instance,

⇣(3) =
1X

n=1

1

n3
= 1.2020569 . . .

is called Apéry’s constant. It was proved to be irrational by Apéry (1979) but a
simple explicit expression for ⇣(3) is not known (and likely doesn’t exist).

The Riemann ⇣-function is intimately connected with number theory and the
distribution of primes. Every positive integer n has a unique factorization

n = p↵1
1 p↵2

2 . . . p↵k
k ,

where the pj are primes and the exponents ↵j are positive integers. Using the
binomial expansion in Example 4.2, we have

✓
1� 1

ps

◆�1

= 1 +
1

ps
+

1

p2s
+

1

p3s
+

1

p4s
+ . . . .

By expanding the products and rearranging the resulting sums, one can see that

⇣(s) =
Y

p

✓
1� 1

ps

◆�1

,

where the product is taken over all primes p, since every possible prime factorization
of a positive integer appears exactly once in the sum on the right-hand side. The
infinite product here is defined as a limit of finite products,

Y

p

✓
1� 1

ps

◆�1

= lim
N!1

Y

pN

✓
1� 1

ps

◆�1

.
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Using complex analysis, one can show that the ⇣-function may be extended
in a unique way to an analytic (i.e., di↵erentiable) function of a complex variable
s = � + it 2 C

⇣ : C \ {1} ! C,
where � = <s is the real part of s and t = =s is the imaginary part. The ⇣-
function has a singularity at s = 1, called a simple pole, where it goes to infinity like
1/(1�s), and is equal to zero at the negative even integers s = �2,�4, . . . ,�2n, . . . .
These zeros are called the trivial zeros of the ⇣-function. Riemann (1859) made the
following conjecture.

Hypothesis 4.23 (Riemann hypothesis). Except for the trivial zeros, the only
zeros of the Riemann ⇣-function occur on the line <s = 1/2.

If true, the Riemann hypothesis has significant consequences for the distribution
of primes (and many other things); roughly speaking, it implies that the prime
numbers are “randomly distributed” among the natural numbers (with density
1/ log n near a large integer n 2 N). Despite enormous e↵orts, this conjecture has
neither been proved nor disproved, and it remains one of the most significant open
problems in mathematics (perhaps the most significant open problem).

4.6. The ratio and root tests

In this section, we describe the ratio and root tests, which provide explicit su�cient
conditions for the absolute convergence of a series that can be compared with a
geometric series. These tests are particularly useful in studying power series, but
they aren’t e↵ective in determining the convergence or divergence of series whose
terms do not approach zero at a geometric rate.

Theorem 4.24 (Ratio test). Suppose that (an) is a sequence of nonzero real num-
bers such that the limit

r = lim
n!1

����
an+1

an

����
exists or diverges to infinity. Then the series

1X

n=1

an

converges absolutely if 0  r < 1 and diverges if 1 < r  1.

Proof. If r < 1, choose s such that r < s < 1. Then there exists N 2 N such that
����
an+1

an

���� < s for all n > N.

It follows that
|an|  Msn for all n > N

whereM is a suitable constant. Therefore
P

an converges absolutely by comparison
with the convergent geometric series

P
Msn.

If r > 1, choose s such that r > s > 1. There exists N 2 N such that
����
an+1

an

���� > s for all n > N,
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so that |an| � Msn for all n > N and some M > 0. It follows that (an) does not
approach 0 as n ! 1, so the series diverges. ⇤

Example 4.25. Let a 2 R, and consider the series
1X

n=1

nan = a+ 2a2 + 3a3 + . . . .

Then

lim
n!1

����
(n+ 1)an+1

nan

���� = |a| lim
n!1

✓
1 +

1

n

◆
= |a|.

By the ratio test, the series converges if |a| < 1 and diverges if |a| > 1; the series
also diverges if |a| = 1. The convergence of the series for |a| < 1 is explained by
the fact that the geometric decay of the factor an is more rapid than the algebraic
growth of the coe�cient n.

Example 4.26. Let p > 0 and consider the p-series
1X

n=1

1

np
.

Then

lim
n!1


1/(n+ 1)p

1/np

�
= lim

n!1


1

(1 + 1/n)p

�
= 1,

so the ratio test is inconclusive. In this case, the series diverges if 0 < p  1 and
converges if p > 1, which shows that either possibility may occur when the limit in
the ratio test is 1.

The root test provides a criterion for convergence of a series that is closely re-
lated to the ratio test, but it doesn’t require that the limit of the ratios of successive
terms exists.

Theorem 4.27 (Root test). Suppose that (an) is a sequence of real numbers and
let

r = lim sup
n!1

|an|1/n .

Then the series
1X

n=1

an

converges absolutely if 0  r < 1 and diverges if 1 < r  1.

Proof. First suppose 0  r < 1. If 0 < r < 1, choose s such that r < s < 1, and
let

t =
r

s
, r < t < 1.

If r = 0, choose any 0 < t < 1. Since t > lim sup |an|1/n, Theorem 3.41 implies
that there exists N 2 N such that

|an|1/n < t for all n > N.

Therefore |an| < tn for all n > N , where t < 1, so it follows that the series converges
by comparison with the convergent geometric series

P
tn.
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Next suppose 1 < r  1. If 1 < r < 1, choose s such that 1 < s < r, and let

t =
r

s
, 1 < t < r.

If r = 1, choose any 1 < t < 1. Since t < lim sup |an|1/n, Theorem 3.41 implies
that

|an|1/n > t for infinitely many n 2 N.
Therefore |an| > tn for infinitely many n 2 N, where t > 1, so (an) does not
approach zero as n ! 1, and the series diverges. ⇤

The root test may succeed where the ratio test fails.

Example 4.28. Consider the geometric series with ratio 1/2,
1X

n=1

an =
1

2
+

1

22
+

1

23
+

1

24
+

1

25
+ . . . , an =

1

2n
.

Then (of course) both the ratio and root test imply convergence since

lim
n!1

����
an+1

an

���� = lim sup
n!1

|an|1/n =
1

2
< 1.

Now consider the series obtained by switching successive odd and even terms
1X

n=1

bn =
1

22
+

1

2
+

1

24
+

1

23
+

1

26
+ . . . , bn =

(
1/2n+1 if n is odd,

1/2n�1 if n is even

For this series, ����
bn+1

bn

���� =
(
2 if n is odd,

1/8 if n is even,

and the ratio test doesn’t apply, since the required limit does not exist. (The series
still converges at a geometric rate, however, because the the decrease in the terms
by a factor of 1/8 for even n dominates the increase by a factor of 2 for odd n.) On
the other hand

lim sup
n!1

|bn|1/n =
1

2
,

so the ratio test still works. In fact, as we discuss in Section 4.8, since the series is
absolutely convergent, every rearrangement of it converges to the same sum.

4.7. Alternating series

An alternating series is one in which successive terms have opposite signs. If the
terms in an alternating series have decreasing absolute values and converge to zero,
then the series converges however slowly its terms approach zero. This allows us to
prove the convergence of some series which aren’t absolutely convergent.

Example 4.29. The alternating harmonic series from Example 4.14 is
1X

n=1

(�1)n+1

n
= 1� 1

2
+

1

3
� 1

4
+

1

5
� . . . .

The behavior of its partial sums is shown in Figure 1, which illustrates the idea of
the convergence proof for alternating series.
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Figure 1. A plot of the first 40 partial sums Sn of the alternating harmonic
series in Example 4.14. The odd partial sums decrease and the even partial
sums increase to the sum of the series log 2 ⇡ 0.6931, which is indicated by
the dashed line.

Theorem 4.30 (Alternating series). Suppose that (an) is a decreasing sequence
of nonnegative real numbers, meaning that 0  an+1  an, such that an ! 0 as
n ! 1. Then the alternating series

1X

n=1

(�1)n+1an = a1 � a2 + a3 � a4 + a5 � . . .

converges.

Proof. Let

Sn =
nX

k=1

(�1)k+1ak

denote the nth partial sum. If n = 2m� 1 is odd, then

S2m�1 = S2m�3 � a2m�2 + a2m�1  S2m�3,

since (an) is decreasing, and

S2m�1 = (a1 � a2) + (a3 � a4) + · · ·+ (a2m�3 � a2m�2) + a2m�1 � 0.

Thus, the sequence (S2m�1) of odd partial sums is decreasing and bounded from
below by 0, so S2m�1 # S+ as m ! 1 for some S+ � 0.

Similarly, if n = 2m is even, then

S2m = S2m�2 + a2m�1 � a2m � S2m�2,
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and
S2m = a1 � (a2 � a3)� (a4 � a5)� · · ·� (a2m�1 � a2m)  a1.

Thus, (S2m) is increasing and bounded from above by a1, so S2m " S�  a1 as
m ! 1.

Finally, note that

lim
m!1

(S2m�1 � S2m) = lim
m!1

a2m = 0,

so S+ = S�, which implies that the series converges to their common value. ⇤

The proof also shows that the sum S2m  S  S2n�1 is bounded from below
and above by all even and odd partial sums, respectively, and that the error |Sn�S|
is less than the first term an+1 in the series that is neglected.

Example 4.31. The alternating p-series
1X

n=1

(�1)n+1

np

converges for every p > 0. The convergence is absolute for p > 1 and conditional
for 0 < p  1.

4.8. Rearrangements

A rearrangement of a series is a series that consists of the same terms in a di↵erent
order. The convergence of rearranged series may initially appear to be unconnected
with absolute convergence, but absolutely convergent series are exactly those series
whose sums remain the same under every rearrangement of their terms. On the
other hand, a conditionally convergent series can be rearranged to give any sum we
please, or to diverge.

Example 4.32. A rearrangement of the alternating harmonic series in Exam-
ple 4.14 is

1� 1

2
� 1

4
+

1

3
� 1

6
� 1

8
+

1

5
� 1

10
� 1

12
+ . . . ,

where we put two negative even terms between each of the positive odd terms. The
behavior of its partial sums is shown in Figure 2. As proved in Example 12.47,
this series converges to one-half of the sum of the alternating harmonic series. The
sum of the alternating harmonic series can change under rearrangement because it
is conditionally convergent.

Note also that both the positive and negative parts of the alternating harmonic
series diverge to infinity, since

1 +
1

3
+

1

5
+

1

7
+ . . . >

1

2
+

1

4
+

1

6
+

1

8
+ . . .

>
1

2

✓
1 +

1

2
+

1

3
+

1

4
+ . . .

◆
,

1

2
+

1

4
+

1

6
+

1

8
+ . . . =

1

2

✓
1 +

1

2
+

1

3
+

1

4
+ . . .

◆
,

and the harmonic series diverges. This is what allows us to change the sum by
rearranging the series.
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Figure 2. A plot of the first 40 partial sums Sn of the rearranged alternating
harmonic series in Example 4.32. The series converges to half the sum of the
alternating harmonic series, 1

2 log 2 ⇡ 0.3466. Compare this picture with Fig-

ure 1.

The formal definition of a rearrangement is as follows.

Definition 4.33. A series
1X

m=1

bm

is a rearrangement of a series
1X

n=1

an

if there is a one-to-one, onto function f : N ! N such that bm = af(m).

If
P

bm is a rearrangement of
P

an with n = f(m), then
P

an is a rearrange-
ment of

P
bm, with m = f�1(n).

Theorem 4.34. If a series is absolutely convergent, then every rearrangement of
the series converges to the same sum.

Proof. First, suppose that
1X

n=1

an
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is a convergent series with an � 0, and let
1X

m=1

bm, bm = af(m)

be a rearrangement.

Given ✏ > 0, choose N 2 N such that

0 
1X

k=1

ak �
NX

k=1

ak < ✏.

Since f : N ! N is one-to-one and onto, there exists M 2 N such that

{1, 2, . . . , N} ⇢ f�1 ({1, 2, . . . ,M}) ,

meaning that all of the terms a1, a2,. . . , aN are included among the b1, b2,. . . , bM .
For example, we can take M = max{m 2 N : 1  f(m)  N}; this maximum is
well-defined since there are finitely many such m (in fact, N of them).

If m > M , then
NX

k=1

ak 
mX

j=1

bj 
1X

k=1

ak

since the bj ’s include all the ak’s in the left sum, all the bj ’s are included among
the ak’s in the right sum, and ak, bj � 0. It follows that

0 
1X

k=1

ak �
mX

j=1

bj < ✏,

for all m > M , which proves that
1X

j=1

bj =
1X

k=1

ak.

If
P

an is a general absolutely convergent series, then from Proposition 4.17
the positive and negative parts of the series

1X

n=1

a+n ,
1X

n=1

a�n

converge. If
P

bm is a rearrangement of
P

an, then
P

b+m and
P

b�m are rearrange-
ments of

P
a+n and

P
a�n , respectively. It follows from what we’ve just proved that

they converge and
1X

m=1

b+m =
1X

n=1

a+n ,
1X

m=1

b�m =
1X

n=1

a�n .

Proposition 4.17 then implies that
P

bm is absolutely convergent and

1X

m=1

bm =
1X

m=1

b+m �
1X

m=1

b�m =
1X

n=1

a+n �
1X

n=1

a�n =
1X

n=1

an,

which proves the result. ⇤
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Figure 3. A plot of the first 40 partial sums Sn of the rearranged alternating
harmonic series described in Example 4.35, which converges to

p
2.

Conditionally convergent series behave completely di↵erently from absolutely
convergent series under rearrangement. As Riemann observed, they can be rear-
ranged to give any sum we want, or to diverge. Before giving the proof, we illustrate
the idea with an example.

Example 4.35. Suppose we want to rearrange the alternating harmonic series

1� 1

2
+

1

3
� 1

4
+

1

5
� 1

6
+ . . . .

so that its sum is
p
2 ⇡ 1.4142. We choose positive terms until we get a partial sum

that is greater than
p
2, which gives 1+1/3+1/5; followed by negative terms until

we get a sum less than
p
2, which gives 1 + 1/3 + 1/5 � 1/2; followed by positive

terms until we get a sum greater than
p
2, which gives

1 +
1

3
+

1

5
� 1

2
+

1

7
+

1

9
+

1

11
+

1

13
;

followed by another negative term �1/4 to get a sum less than
p
2; and so on. The

first 40 partial sums of the resulting series are shown in Figure 3.

Theorem 4.36. If a series is conditionally convergent, then it has rearrangements
that converge to an arbitrary real number and rearrangements that diverge to 1
or �1.

Proof. Suppose that
P

an is conditionally convergent. Since the series converges,
an ! 0 as n ! 1. If both the positive part

P
a+n and negative part

P
a�n of the
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series converge, then the series converges absolutely; and if only one part diverges,
then the series diverges (to 1 if

P
a+n diverges, or �1 if

P
a�n diverges). Therefore

both
P

a+n and
P

a�n diverge. This means that we can make sums of successive
positive or negative terms in the series as large as we wish.

Suppose S 2 R. Starting from the beginning of the series, we choose successive
positive or zero terms in the series until their partial sum is greater than or equal
to S. Then we choose successive strictly negative terms, starting again from the
beginning of the series, until the partial sum of all the terms is strictly less than
S. After that, we choose successive positive or zero terms until the partial sum is
greater than or equal S, followed by negative terms until the partial sum is strictly
less than S, and so on. The partial sums are greater than S by at most the value
of the last positive term retained, and are less than S by at most the value of the
last negative term retained. Since an ! 0 as n ! 1, it follows that the rearranged
series converges to S.

A similar argument shows that we can rearrange a conditional convergent series
to diverge to 1 or �1, and that we can rearrange the series so that it diverges in
a finite or infinite oscillatory fashion. ⇤

The previous results indicate that conditionally convergent series behave in
many ways more like divergent series than absolutely convergent series.

4.9. The Cauchy product

In this section, we prove a result about the product of absolutely convergent series
that is useful in multiplying power series. It is convenient to begin numbering the
terms of the series at n = 0.

Definition 4.37. The Cauchy product of the series
1X

n=0

an,
1X

n=0

bn

is the series
1X

n=0

 
nX

k=0

akbn�k

!
.

The Cauchy product arises formally by term-by-term multiplication and re-
arrangement:

(a0 + a1 + a2 + a3 + . . . ) (b0 + b1 + b2 + b3 + . . . )

= a0b0 + a0b1 + a0b2 + a0b3 + · · ·+ a1b0 + a1b1 + a1b2 + . . .

+ a2b0 + a2b1 + · · ·+ a3b0 + . . .

= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0)

+ (a0b3 + a1b2 + a2b1 + a3b0) + . . . .

In general, writing m = n� k, we have formally that
 1X

n=0

an

! 1X

n=0

bn

!
=

1X

k=0

1X

m=0

akbm =
1X

n=0

nX

k=0

akbn�k.
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There are no convergence issues about the individual terms in the Cauchy product,
since

Pn
k=0 akbn�k is a finite sum.

Theorem 4.38 (Cauchy product). If the series

1X

n=0

an,
1X

n=0

bn

are absolutely convergent, then the Cauchy product is absolutely convergent and

1X

n=0

 
nX

k=0

akbn�k

!
=

 1X

n=0

an

! 1X

n=0

bn

!
.

Proof. For every N 2 N, we have

NX

n=0

�����

nX

k=0

akbn�k

����� 
NX

n=0

 
nX

k=0

|ak||bn�k|
!


 

NX

k=0

|ak|
! 

NX

m=0

|bm|
!


 1X

n=0

|an|
! 1X

n=0

|bn|
!
.

Thus, the Cauchy product is absolutely convergent, since the partial sums of its
absolute values are bounded from above.

Since the series for the Cauchy product is absolutely convergent, any rearrange-
ment of it converges to the same sum. In particular, the subsequence of partial sums
given by  

NX

n=0

an

! 
NX

n=0

bn

!
=

NX

n=0

NX

m=0

anbm

corresponds to a rearrangement of the Cauchy product, so

1X

n=0

 
nX

k=0

akbn�k

!
= lim

N!1

 
NX

n=0

an

! 
NX

n=0

bn

!
=

 1X

n=0

an

! 1X

n=0

bn

!
.

⇤

In fact, as we discuss in the next section, since the series of term-by-term
products of absolutely convergent series converges absolutely, every rearrangement
of the product series — not just the one in the Cauchy product — converges to the
product of the sums.

4.10. * Double series

A double series is a series of the form
1X

m,n=1

amn,


