Solutions to Class Test on Calculus

Aditya Ghosh

June 2019

1. Define $x_n = \sin a + \sin(a + d) + \sin(a + 2d) + \dots + \sin(a + (n - 1)d)$, for $n \ge 1$. Find all real numbers a, d for which the sequence $\{x_n\}_{n\geq 1}$ is bounded.

Solution: First let us assume that $d/2 \neq k\pi$ for any $k \in \mathbb{Z}$, which ensures that $\sin \frac{d}{2} \neq 0$. We observe that

$$2\sin\frac{d}{2}x_n = 2\sin\frac{d}{2}\sin a + 2\sin\frac{d}{2}\sin(a+d) + \dots + 2\sin\frac{d}{2}\sin(a+(n-1)d)$$

= $\cos\left(a - \frac{d}{2}\right) - \cos\left(a + \frac{d}{2}\right) + \cos\left(a + \frac{d}{2}\right) - \cos\left(a + 3\frac{d}{2}\right)$
+ $\cos\left(a + 3\frac{d}{2}\right) - \dots + \cos\left(a + (2n-3)\frac{d}{2}\right) - \cos\left(a + (2n-1)\frac{d}{2}\right)$
= $\cos\left(a - \frac{d}{2}\right) - \cos\left(a + (2n-1)\frac{d}{2}\right).$

Thus, $\left|2\sin\frac{d}{2}\cdot x_n\right| = \left|\cos\left(a-\frac{d}{2}\right)-\cos\left(a+(2n-1)\frac{d}{2}\right)\right| \le 2$, for all $n \ge 1$. In other words, for every $n \ge 1$, we have $|x_n| \le |\operatorname{cosec} \frac{d}{2}|$. Therefore, the sequence is bounded whenever d/2 is not an integer multiple of π .

Next, let us consider the case when $d/2 = k\pi$ for some integer k. In this case, we have $\sin(a+jd) = \sin(a+j\cdot 2k\pi) = \sin a$ for every integer j. Therefore $x_n = n \sin a$, for $n \ge 1$. So in this case, the sequence x_n is bounded if only if $\sin a = 0$, i.e. if and only if $a = m\pi$ for some integer m.

- 2. Suppose that $\{x_n\}_{n\geq 1}$ and $\{y_n\}_{n\geq 1}$ are two convergent sequences, with $\lim_{n\to\infty} x_n =$ $\lim y_n$. Determine (with proof/counter-example) whether the following statements are true or false:
 - (a) $\lim_{n \to \infty} (x_1 + \dots + x_n) = \lim_{n \to \infty} (y_1 + \dots + y_n).$ (b) $\lim_{n \to \infty} (x_n)^n = \lim_{n \to \infty} (y_n)^n.$

(Note, a statement is false if it fails to hold even for just one case.)

Solution: Both the statements are **false** (i.e. they are not necessarily true). Counter-examples are given below.

(a) Take $x_n = 1/2^n$ and $y_n = 1/3^n$. (In fact you can take x_n to be the *n*-th term of any convergent series and take $y_n = 0$.)

- (b) Take $x_n = 2^{1/n}$ and $y_n = 3^{1/n}$. There are many other counter-examples too.
- 3. Suppose that x_n satisfies $x_{n+1} = \sqrt{6 + x_n}$ for every $n \ge 1$, and let $x_1 = \sqrt{6}$. Show that x_n converges and also find the limit.

Solution: First note that $x_n > 0$ for all $n \ge 1$. Next, note that we can also give an upper bound. We shall induct on n to show that $x_n < 3$ for all $n \ge 1$. Base case: $x_1 = \sqrt{6} < 3$. Inductive step: $x_{n+1} = \sqrt{6 + x_n} < \sqrt{6 + 3} = 3$.

Thus, we have shown that $0 < x_n < 3$ holds for every $n \ge 1$. Next, we shall try to see whether the sequence is increasing or decreasing. We do a rough work:

$$x_{n+1} < x_n \iff \sqrt{6+x_n} < x_n \iff 6+x_n < x_n^2 \iff 0 < (x_n-3)(x_n+2).$$

But, the last inequality is false. In fact, we have $(x_n - 3)(x_n + 2) < 0$ for each $n \ge 1$. Therefore, reversing the inequality sign in the above calculation, we arrive at $x_{n+1} > x_n$ for each $n \ge 1$.

Thus x_n is increasing and bounded above, hence convergent. Say $\lim_{n\to\infty} x_n = \ell$. Letting $n \to \infty$ in the recurrence $x_{n+1} = \sqrt{6+x_n}$, we get $\ell = \sqrt{6+\ell} \iff (\ell-3)(\ell+2) = 0 \iff \ell = 3$ or -2. Since $x_n > 0$ for all $n \ge 1$, the limit must be $\ell = 3$.

4. Suppose a is a positive real number. Define a sequence $\{x_n\}_{n>1}$ by

$$x_n = \frac{[a] + [2a] + \dots + [na]}{n^2}, n \ge 1.$$

Prove that $\lim_{n\to\infty} x_n$ exists and also find the limit. (Here [t] denotes the greatest integer less than or equal to t.)

Solution: We shall give upper and lower bound and see whether we can apply Sandwich theorem. The most crucial bounds for [x] is that: $x - 1 < [x] \le x$ for every $x \in \mathbb{R}$. Using this, we get

$$\frac{n(n+1)}{2}a - n = \sum_{k=1}^{n} (ka-1) < \sum_{k=1}^{n} [ka] \le \sum_{k=1}^{n} ka = \frac{n(n+1)}{2}a.$$

Now, observe that

$$\lim_{n \to \infty} \frac{1}{n^2} \left(\frac{n(n+1)}{2} a - n \right) = \frac{a}{2} = \lim_{n \to \infty} \frac{1}{n^2} \frac{n(n+1)}{2} a.$$

So Sandwich theorem applies here and tells us that the given limit exists and equals a/2.