Solutions to Class Test on Calculus

Aditya Ghosh

June 2019

1. Define $x_{n}=\sin a+\sin (a+d)+\sin (a+2 d)+\cdots+\sin (a+(n-1) d)$, for $n \geq 1$. Find all real numbers a,d for which the sequence $\left\{x_{n}\right\}_{n \geq 1}$ is bounded.

Solution: First let us assume that $d / 2 \neq k \pi$ for any $k \in \mathbb{Z}$, which ensures that $\sin \frac{d}{2} \neq 0$. We observe that

$$
\begin{aligned}
2 \sin \frac{d}{2} x_{n}= & 2 \sin \frac{d}{2} \sin a+2 \sin \frac{d}{2} \sin (a+d)+\cdots+2 \sin \frac{d}{2} \sin (a+(n-1) d) \\
= & \cos \left(a-\frac{d}{2}\right)-\cos \left(a+\frac{d}{2}\right)+\cos \left(a+\frac{d}{2}\right)-\cos \left(a+3 \frac{d}{2}\right) \\
& +\cos \left(a+3 \frac{d}{2}\right)-\cdots+\cos \left(a+(2 n-3) \frac{d}{2}\right)-\cos \left(a+(2 n-1) \frac{d}{2}\right) \\
= & \cos \left(a-\frac{d}{2}\right)-\cos \left(a+(2 n-1) \frac{d}{2}\right) .
\end{aligned}
$$

Thus, $\left|2 \sin \frac{d}{2} \cdot x_{n}\right|=\left|\cos \left(a-\frac{d}{2}\right)-\cos \left(a+(2 n-1) \frac{d}{2}\right)\right| \leq 2$, for all $n \geq 1$. In other words, for every $n \geq 1$, we have $\left|x_{n}\right| \leq\left|\operatorname{cosec} \frac{d}{2}\right|$. Therefore, the sequence is bounded whenever $d / 2$ is not an integer multiple of π.
Next, let us consider the case when $d / 2=k \pi$ for some integer k. In this case, we have $\sin (a+j d)=\sin (a+j \cdot 2 k \pi)=\sin a$ for every integer j. Therefore $x_{n}=n \sin a$, for $n \geq 1$. So in this case, the sequence x_{n} is bounded if only if $\sin a=0$, i.e. if and only if $a=m \pi$ for some integer m.
2. Suppose that $\left\{x_{n}\right\}_{n \geq 1}$ and $\left\{y_{n}\right\}_{n \geq 1}$ are two convergent sequences, with $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}$. Determine (with proof/counter-example) whether the following statements are true or false:
(a) $\lim _{n \rightarrow \infty}\left(x_{1}+\cdots+x_{n}\right)=\lim _{n \rightarrow \infty}\left(y_{1}+\cdots+y_{n}\right)$.
(b) $\lim _{n \rightarrow \infty}\left(x_{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(y_{n}\right)^{n}$.
(Note, a statement is false if it fails to hold even for just one case.)

Solution: Both the statements are false (i.e. they are not necessarily true). Counter-examples are given below.
(a) Take $x_{n}=1 / 2^{n}$ and $y_{n}=1 / 3^{n}$. (In fact you can take x_{n} to be the n-th term of any convergent series and take $y_{n}=0$.)
(b) Take $x_{n}=2^{1 / n}$ and $y_{n}=3^{1 / n}$. There are many other counter-examples too.
3. Suppose that x_{n} satisfies $x_{n+1}=\sqrt{6+x_{n}}$ for every $n \geq 1$, and let $x_{1}=\sqrt{6}$. Show that x_{n} converges and also find the limit.
Solution: First note that $x_{n}>0$ for all $n \geq 1$. Next, note that we can also give an upper bound. We shall induct on n to show that $x_{n}<3$ for all $n \geq 1$. Base case: $x_{1}=\sqrt{6}<3$. Inductive step: $x_{n+1}=\sqrt{6+x_{n}}<\sqrt{6+3}=3$.
Thus, we have shown that $0<x_{n}<3$ holds for every $n \geq 1$. Next, we shall try to see whether the sequence is increasing or decreasing. We do a rough work:

$$
x_{n+1}<x_{n} \Longleftrightarrow \sqrt{6+x_{n}}<x_{n} \Longleftrightarrow 6+x_{n}<x_{n}^{2} \Longleftrightarrow 0<\left(x_{n}-3\right)\left(x_{n}+2\right) .
$$

But, the last inequality is false. In fact, we have $\left(x_{n}-3\right)\left(x_{n}+2\right)<0$ for each $n \geq 1$. Therefore, reversing the inequality sign in the above calculation, we arrive at $x_{n+1}>x_{n}$ for each $n \geq 1$.

Thus x_{n} is increasing and bounded above, hence convergent. Say $\lim _{n \rightarrow \infty} x_{n}=\ell$. Letting $n \rightarrow \infty$ in the recurrence $x_{n+1}=\sqrt{6+x_{n}}$, we get $\ell=\sqrt{6+\ell} \Longleftrightarrow$ $(\ell-3)(\ell+2)=0 \Longleftrightarrow \ell=3$ or -2 . Since $x_{n}>0$ for all $n \geq 1$, the limit must be $\ell=3$.
4. Suppose a is a positive real number. Define a sequence $\left\{x_{n}\right\}_{n \geq 1}$ by

$$
x_{n}=\frac{[a]+[2 a]+\cdots+[n a]}{n^{2}}, n \geq 1
$$

Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists and also find the limit. (Here $[t]$ denotes the greatest integer less than or equal to t.)

Solution: We shall give upper and lower bound and see whether we can apply Sandwich theorem. The most crucial bounds for $[x]$ is that: $x-1<[x] \leq x$ for every $x \in \mathbb{R}$. Using this, we get

$$
\frac{n(n+1)}{2} a-n=\sum_{k=1}^{n}(k a-1)<\sum_{k=1}^{n}[k a] \leq \sum_{k=1}^{n} k a=\frac{n(n+1)}{2} a .
$$

Now, observe that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(\frac{n(n+1)}{2} a-n\right)=\frac{a}{2}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \frac{n(n+1)}{2} a .
$$

So Sandwich theorem applies here and tells us that the given limit exists and equals $a / 2$.

