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1. Define xn = sin a + sin(a + d) + sin(a + 2d) + · · · + sin(a + (n − 1)d), for n ≥ 1.

Find all real numbers a, d for which the sequence {xn}n≥1 is bounded.

Solution: First let us assume that d/2 6= kπ for any k ∈ Z, which ensures that
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∣∣ = ∣∣∣cos(a− d
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)∣∣∣ ≤ 2, for all n ≥ 1. In

other words, for every n ≥ 1, we have |xn| ≤ |cosec d
2
|. Therefore, the sequence is

bounded whenever d/2 is not an integer multiple of π.

Next, let us consider the case when d/2 = kπ for some integer k. In this case, we

have sin(a+jd) = sin(a+j ·2kπ) = sin a for every integer j. Therefore xn = n sin a,

for n ≥ 1. So in this case, the sequence xn is bounded if only if sin a = 0, i.e. if

and only if a = mπ for some integer m.

2. Suppose that {xn}n≥1 and {yn}n≥1 are two convergent sequences, with lim
n→∞

xn =

lim
n→∞

yn. Determine (with proof/counter-example) whether the following statements

are true or false:

(a) lim
n→∞

(x1 + · · ·+ xn) = lim
n→∞

(y1 + · · ·+ yn).

(b) lim
n→∞

(xn)
n = lim

n→∞
(yn)

n.

(Note, a statement is false if it fails to hold even for just one case.)
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Solution: Both the statements are false (i.e. they are not necessarily true).

Counter-examples are given below.

(a) Take xn = 1/2n and yn = 1/3n. (In fact you can take xn to be the n-th term of

any convergent series and take yn = 0.)

(b) Take xn = 21/n and yn = 31/n. There are many other counter-examples too.

3. Suppose that xn satisfies xn+1 =
√
6 + xn for every n ≥ 1, and let x1 =

√
6. Show

that xn converges and also find the limit.

Solution: First note that xn > 0 for all n ≥ 1. Next, note that we can also give an

upper bound. We shall induct on n to show that xn < 3 for all n ≥ 1. Base case:

x1 =
√
6 < 3. Inductive step: xn+1 =

√
6 + xn <

√
6 + 3 = 3.

Thus, we have shown that 0 < xn < 3 holds for every n ≥ 1. Next, we shall try to

see whether the sequence is increasing or decreasing. We do a rough work:

xn+1 < xn ⇐⇒
√
6 + xn < xn ⇐⇒ 6 + xn < x2n ⇐⇒ 0 < (xn − 3)(xn + 2).

But, the last inequality is false. In fact, we have (xn − 3)(xn + 2) < 0 for each

n ≥ 1. Therefore, reversing the inequality sign in the above calculation, we arrive

at xn+1 > xn for each n ≥ 1.

Thus xn is increasing and bounded above, hence convergent. Say limn→∞ xn = `.

Letting n → ∞ in the recurrence xn+1 =
√
6 + xn, we get ` =

√
6 + ` ⇐⇒

(` − 3)(` + 2) = 0 ⇐⇒ ` = 3 or − 2. Since xn > 0 for all n ≥ 1, the limit must

be ` = 3.

4. Suppose a is a positive real number. Define a sequence {xn}n≥1 by

xn =
[a] + [2a] + · · ·+ [na]

n2
, n ≥ 1.

Prove that lim
n→∞

xn exists and also find the limit. (Here [t] denotes the greatest

integer less than or equal to t.)

Solution: We shall give upper and lower bound and see whether we can apply

Sandwich theorem. The most crucial bounds for [x] is that: x − 1 < [x] ≤ x for

every x ∈ R. Using this, we get
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2
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Now, observe that
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1
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2
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So Sandwich theorem applies here and tells us that the given limit exists and equals

a/2.
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