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1. Suppose f(x) =
9x

9x + 3
. Find the value of

f
( 1

2019

)
+ f
( 2

2019

)
+ f
( 3

2019

)
+ · · ·+ f

(2018

2019

)
.

2. Define f : R → R by f(x) =
e|x| − e−x

ex + e−x
. Is f one-one? Is it onto? If it is not

onto, can you find the range?

3. Suppose that f : A → B and g : B → C are functions such that g is one-one

and g◦f : A→ C is bijective. Determine whether the following are necessarily

true: (i) f is one-one, (ii) g is onto, (iii) f is onto.

4. Suppose that f : R → R is a function that satisfies f(f(f(x))) = x for every

x ∈ R. Show that (i) f is bijective and (ii) f can not be strictly decreasing. Is

it necessary that f(x) = x for all x ∈ R?

5. Find all functions f : R → R that satisfies |f(x) − f(y)| ≤ (x − y)2 for all

x, y ∈ R.

6. Let S be the set of all points in a plane. Suppose f : S → R is a function such

that for every square ABCD it holds that f(A) + f(B) + f(C) + f(D) = 0.

Prove that, f(P ) = 0 for every P ∈ S. Note, degenerate square (square of side

length 0) is not allowed.

7. Suppose that f : N → N is bijective. Show that there exists a, b, c ∈ N which

are in arithmetic progression and f(a) < f(b) < f(c) holds.

8. Let f, g : N → N be functions such that f is onto and g is one-one. Further-

more, assume that f(n) ≥ g(n) holds for every n ∈ N. Prove that f = g.

9. Determine whether there exists a one-one function f : R→ R satisfying

f(x2)− f(x)2 ≥ 1

4

for every x ∈ R.
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10. Suppose f : N→ N has the property that for every n ∈ N,

f(1) + f(2) + · · ·+ f(n) = c3n ≤ n3

where cn ∈ N. Find f(n).

11. Show that for every x ∈ R and n ∈ N,

bxc+

⌊
x+

1

n

⌋
+

⌊
x+

2

n

⌋
+ · · ·+

⌊
x+

n− 1

n

⌋
= bnxc .

(Hint: One approach is to use periodicity.)

12. Let α, β be positive irrational numbers such that 1/α+1/β = 1. Show that the

sequences f(n) = bαnc and g(n) = bβnc (n ∈ N) are disjoint and their union

is N. (In other words, show that Range(f) ∩ Range(g) = φ and Range(f) ∪
Range(g) = N.)

13. f : N→ N satisfies f(m+ n) ≤ f(m) + f(n) for every m,n ∈ N. Show that,

f(1) +
f(2)

2
+
f(3)

3
+ · · ·+ f(n)

n
≥ f(n)

holds for every n ∈ N.

14. Let f : N→ N be a function satisfying f(1) = 1, f(2n) = f(n) and f(2n+1) =

f(n)+1 for every n ∈ N. Find the maximum value of f(n) when 1 ≤ n ≤ 2019.

(Hint: Think about representing n in binary.)

Hints/Answers

1. Show that f(x) + f(−x) = 1 for every x ∈ R.

2. Note that for x ≤ 0, f(x) = 0. And for x > 0, f(x) = (ex − e−x)/(ex + e−x).

Clearly, f is neither one-one, nor onto. The range of f(x) is [0, 1).

3. (i) f(x) = f(y) =⇒ g(f(x)) = g(f(y)) =⇒ x = y.

(ii) Take any c ∈ C. Since g◦f is onto, there exists a ∈ A such that g(f(a)) = c.

Hence we get b = f(a) ∈ B such that g(b) = c.

(iii) Take any b ∈ B. Then c = g(b) ∈ C. Now, since g ◦ f is onto, there exists

a ∈ A such that g(f(a)) = c. Hence we get g(f(a)) = g(b) =⇒ f(a) = b (as

g is one-one).
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4. It is easy to show that f is one-one and can not be strictly decreasing. For the

last part, the answer is ‘No’. Define f(x) = 1/(1 − x) for x 6= 0, 1. And set

f(0) = 0, f(1) = 1. Check that f(f(f(x))) = x holds for all x.

5. Fix x, y. Let z = (x + y)/2. Observe that |f(x) − f(y)| ≤ |f(x) − f(z)| +
|f(z) − f(y)| ≤ (x − z)2 + (z − y)2 = (x − y)2/2. This holds for every x, y.

Prove (by induction) that for any x, y and for every n ≥ 1, it holds that

|f(x) − f(y)| ≤ (x − y)2/2n. Now fix x, y and let n → ∞ which gives us

|f(x)− f(y)| ≤ 0 =⇒ f(x) = f(y). Thus, we get f(x) = f(y) for every x, y;

which means f is a constant function.

6. Fix any point P. Consider a 2× 2 grid whose center is P. Sum the value of f

on the vertices of each small square. Observe that there are two more squares

to be considered.

7. Since f is surjective, there exists a ∈ N such that f(a) = 1. Then, since f

is injective, we have f(a) = 1 < f(n) for every n 6= a. Consider a + 1, a +

2, a+ 4, a+ 8, · · · . Convince yourself that we can’t have f(b) > f(c) for all b, c

which are consecutive terms of this sequence (i.e. we can’t have f(a+ 2k−1) >

f(a + 2k) for all k ≥ 1). Hence, there must exist some k ≥ 1 such that

f(a+ 2k−1) < f(a+ 2k). Take b = a+ 2k−1 and c = a+ 2k. Then, a, b, c are in

arithmetic progression and f(a) < f(b) < f(c).

8. There exists n1 ∈ N such that f(n1) = 1. Then, 1 = f(n1) ≥ g(n1) =⇒
g(n1) = 1. Again, there exists n2 ∈ N such that f(n2) = 2. Hence, 2 =

f(n2) ≥ g(n2) =⇒ g(n2) = 1 or 2. But g is one-one and n2 6= n1, so we

must have g(n2) = 2. In this way, for every k ∈ N, there exits nk ∈ N such

that f(nk) = k, and we prove that g(nk) = k by induction on k. Therefore, we

have f(nk) = g(nk) = k for every k ∈ N. [But it is not sufficient to tell that

f = g, because {nk : k ≥ 1} might be just a proper subset of N. To complete

the proof, we have to take any arbitrary m ∈ N and show that f(m) = g(m).]

Fix any m ∈ N and call g(m) = k. We have k = f(nk) = g(nk). Hence,

g(m) = k = g(nk) =⇒ m = nk. Therefore, f(m) = f(nk) = g(nk) = g(m).

9. Put x = 0 first and get (f(0) − 1/2)2 ≤ 0 =⇒ f(0) = 1/2. Now put x = 1

and get f(1) = 1/2 = f(0), which contradicts that f is one-one.

10. Show cn = n by inducting on n. (Clearly this holds for n = 1. And if this holds

for n = k − 1, then we have (k − 1)3 = ck−1 < ck ≤ k3 =⇒ ck = k3.) Hence
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deduce that f(n) = n3 − (n− 1)3 for every n ∈ N.

11. Fix n ∈ N. Consider f(x) = LHS − RHS. Show that f(x + 1/n) = f(x) for

every x ∈ R. Now show that f(x) = 0 for x ∈ [0, 1/n). Convince yourself that

showing these two results completes the proof.

12. First we prove that they are disjoint. Let, if possible, bαmc = bβnc = q. Then,

q < αm, βn < n + 1. Now show that this brings a contradiction. Next, we

need to show that their union is N. Observe that we must have 1 < α, β < 2.

Hence, the intervals [αm,α(m + 1)] have length greater than 1 but not more

than 2. So if some k ∈ N is missing from both the sequences, there must exists

q > 0 such that αm < q < q + 1 < α(m + 1) and βn < q < q + 1 < β(n + 1).

Deduce that m+n
q

< 1 < m+n+2
q+1

=⇒ m+ n < q < q + 1 < m+ n+ 2 which is

a contradiction.

13. We induct on n. The case n = 1 is trivially true. Suppose the assertion is true

for all n ≤ k. Then we have

f(1) ≥ f(1), f(1)+
f(2)

2
≥ f(2), · · · , f(1)+

f(2)

2
+
f(3)

3
+ · · ·+ f(k)

k
≥ f(k).

Adding these inequalities altogether, we get

kf(1) + (k − 1)
f(2)

2
+ · · ·+ f(k)

k
≥ f(1) + f(2) + · · ·+ f(k)

Next, adding (f(1) + f(2) + · · ·+ f(k)) to both sides, we get

(k + 1)

(
f(1) +

f(2)

2
+ · · ·+ f(k)

k

)
≥

k∑
i=1

f(i) + f(k + 1− i) (∗)

Now, by using the given condition on f, we get, f(i) + f(k + 1 − i) ≥ f(i +

k+ 1− i) = f(k+ 1) for each i = 1, 2, . . . k. This combines with (∗) to give us,

f(1) +
f(2)

2
+ · · ·+ f(k)

k
≥ k

k + 1
f(k + 1) = f(k + 1)− f(k + 1)

k + 1

This closes our induction.

14. Show that f(n) equals the number of 1’s in the binary representation of n.

You can prove it by induction on the number of digits (in base 2) of n.
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