Some Problems on Functions

Aditya Ghosh

July 2019

1. Suppose $f(x)=\frac{9^{x}}{9^{x}+3}$. Find the value of

$$
f\left(\frac{1}{2019}\right)+f\left(\frac{2}{2019}\right)+f\left(\frac{3}{2019}\right)+\cdots+f\left(\frac{2018}{2019}\right) .
$$

2. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\frac{e^{|x|}-e^{-x}}{e^{x}+e^{-x}}$. Is f one-one? Is it onto? If it is not onto, can you find the range?
3. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions such that g is one-one and $g \circ f: A \rightarrow C$ is bijective. Determine whether the following are necessarily true: (i) f is one-one, (ii) g is onto, (iii) f is onto.
4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function that satisfies $f(f(f(x)))=x$ for every $x \in \mathbb{R}$. Show that (i) f is bijective and (ii) f can not be strictly decreasing. Is it necessary that $f(x)=x$ for all $x \in \mathbb{R}$?
5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies $|f(x)-f(y)| \leq(x-y)^{2}$ for all $x, y \in \mathbb{R}$.
6. Let \mathcal{S} be the set of all points in a plane. Suppose $f: \mathcal{S} \rightarrow \mathbb{R}$ is a function such that for every square $A B C D$ it holds that $f(A)+f(B)+f(C)+f(D)=0$. Prove that, $f(P)=0$ for every $P \in \mathcal{S}$. Note, degenerate square (square of side length 0) is not allowed.
7. Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is bijective. Show that there exists $a, b, c \in \mathbb{N}$ which are in arithmetic progression and $f(a)<f(b)<f(c)$ holds.
8. Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$ be functions such that f is onto and g is one-one. Furthermore, assume that $f(n) \geq g(n)$ holds for every $n \in \mathbb{N}$. Prove that $f=g$.
9. Determine whether there exists a one-one function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{2}\right)-f(x)^{2} \geq \frac{1}{4}
$$

for every $x \in \mathbb{R}$.
10. Suppose $f: \mathbb{N} \rightarrow \mathbb{N}$ has the property that for every $n \in \mathbb{N}$,

$$
f(1)+f(2)+\cdots+f(n)=c_{n}^{3} \leq n^{3}
$$

where $c_{n} \in \mathbb{N}$. Find $f(n)$.
11. Show that for every $x \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
\lfloor x\rfloor+\left\lfloor x+\frac{1}{n}\right\rfloor+\left\lfloor x+\frac{2}{n}\right\rfloor+\cdots+\left\lfloor x+\frac{n-1}{n}\right\rfloor=\lfloor n x\rfloor .
$$

(Hint: One approach is to use periodicity.)
12. Let α, β be positive irrational numbers such that $1 / \alpha+1 / \beta=1$. Show that the sequences $f(n)=\lfloor\alpha n\rfloor$ and $g(n)=\lfloor\beta n\rfloor(n \in \mathbb{N})$ are disjoint and their union is \mathbb{N}. (In other words, show that Range $(f) \cap \operatorname{Range}(g)=\phi$ and Range $(f) \cup$ Range $(g)=\mathbb{N}$.)
13. $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfies $f(m+n) \leq f(m)+f(n)$ for every $m, n \in \mathbb{N}$. Show that,

$$
f(1)+\frac{f(2)}{2}+\frac{f(3)}{3}+\cdots+\frac{f(n)}{n} \geq f(n)
$$

holds for every $n \in \mathbb{N}$.
14. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying $f(1)=1, f(2 n)=f(n)$ and $f(2 n+1)=$ $f(n)+1$ for every $n \in \mathbb{N}$. Find the maximum value of $f(n)$ when $1 \leq n \leq 2019$. (Hint: Think about representing n in binary.)

Hints/Answers

1. Show that $f(x)+f(-x)=1$ for every $x \in \mathbb{R}$.
2. Note that for $x \leq 0, f(x)=0$. And for $x>0, f(x)=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$. Clearly, f is neither one-one, nor onto. The range of $f(x)$ is $[0,1)$.
3. (i) $f(x)=f(y) \Longrightarrow g(f(x))=g(f(y)) \Longrightarrow x=y$.
(ii) Take any $c \in C$. Since $g \circ f$ is onto, there exists $a \in A$ such that $g(f(a))=c$. Hence we get $b=f(a) \in B$ such that $g(b)=c$.
(iii) Take any $b \in B$. Then $c=g(b) \in C$. Now, since $g \circ f$ is onto, there exists $a \in A$ such that $g(f(a))=c$. Hence we get $g(f(a))=g(b) \Longrightarrow f(a)=b$ (as g is one-one).
4. It is easy to show that f is one-one and can not be strictly decreasing. For the last part, the answer is 'No'. Define $f(x)=1 /(1-x)$ for $x \neq 0,1$. And set $f(0)=0, f(1)=1$. Check that $f(f(f(x)))=x$ holds for all x.
5. Fix x, y. Let $z=(x+y) / 2$. Observe that $|f(x)-f(y)| \leq|f(x)-f(z)|+$ $|f(z)-f(y)| \leq(x-z)^{2}+(z-y)^{2}=(x-y)^{2} / 2$. This holds for every x, y. Prove (by induction) that for any x, y and for every $n \geq 1$, it holds that $|f(x)-f(y)| \leq(x-y)^{2} / 2^{n}$. Now fix x, y and let $n \rightarrow \infty$ which gives us $|f(x)-f(y)| \leq 0 \Longrightarrow f(x)=f(y)$. Thus, we get $f(x)=f(y)$ for every x, y; which means f is a constant function.
6. Fix any point P . Consider a 2×2 grid whose center is P. Sum the value of f on the vertices of each small square. Observe that there are two more squares to be considered.
7. Since f is surjective, there exists $a \in \mathbb{N}$ such that $f(a)=1$. Then, since f is injective, we have $f(a)=1<f(n)$ for every $n \neq a$. Consider $a+1, a+$ $2, a+4, a+8, \cdots$. Convince yourself that we can't have $f(b)>f(c)$ for all b, c which are consecutive terms of this sequence (i.e. we can't have $f\left(a+2^{k-1}\right)>$ $f\left(a+2^{k}\right)$ for all $k \geq 1$). Hence, there must exist some $k \geq 1$ such that $f\left(a+2^{k-1}\right)<f\left(a+2^{k}\right)$. Take $b=a+2^{k-1}$ and $c=a+2^{k}$. Then, a, b, c are in arithmetic progression and $f(a)<f(b)<f(c)$.
8. There exists $n_{1} \in \mathbb{N}$ such that $f\left(n_{1}\right)=1$. Then, $1=f\left(n_{1}\right) \geq g\left(n_{1}\right) \Longrightarrow$ $g\left(n_{1}\right)=1$. Again, there exists $n_{2} \in \mathbb{N}$ such that $f\left(n_{2}\right)=2$. Hence, $2=$ $f\left(n_{2}\right) \geq g\left(n_{2}\right) \Longrightarrow g\left(n_{2}\right)=1$ or 2 . But g is one-one and $n_{2} \neq n_{1}$, so we must have $g\left(n_{2}\right)=2$. In this way, for every $k \in \mathbb{N}$, there exits $n_{k} \in \mathbb{N}$ such that $f\left(n_{k}\right)=k$, and we prove that $g\left(n_{k}\right)=k$ by induction on k. Therefore, we have $f\left(n_{k}\right)=g\left(n_{k}\right)=k$ for every $k \in \mathbb{N}$. [But it is not sufficient to tell that $f=g$, because $\left\{n_{k}: k \geq 1\right\}$ might be just a proper subset of \mathbb{N}. To complete the proof, we have to take any arbitrary $m \in \mathbb{N}$ and show that $f(m)=g(m)$.] Fix any $m \in \mathbb{N}$ and call $g(m)=k$. We have $k=f\left(n_{k}\right)=g\left(n_{k}\right)$. Hence, $g(m)=k=g\left(n_{k}\right) \Longrightarrow m=n_{k}$. Therefore, $f(m)=f\left(n_{k}\right)=g\left(n_{k}\right)=g(m)$.
9. Put $x=0$ first and get $(f(0)-1 / 2)^{2} \leq 0 \Longrightarrow f(0)=1 / 2$. Now put $x=1$ and get $f(1)=1 / 2=f(0)$, which contradicts that f is one-one.
10. Show $c_{n}=n$ by inducting on n. (Clearly this holds for $n=1$. And if this holds for $n=k-1$, then we have $(k-1)^{3}=c_{k-1}<c_{k} \leq k^{3} \Longrightarrow c_{k}=k^{3}$.) Hence
deduce that $f(n)=n^{3}-(n-1)^{3}$ for every $n \in \mathbb{N}$.
11. Fix $n \in \mathbb{N}$. Consider $f(x)=$ LHS - RHS. Show that $f(x+1 / n)=f(x)$ for every $x \in \mathbb{R}$. Now show that $f(x)=0$ for $x \in[0,1 / n)$. Convince yourself that showing these two results completes the proof.
12. First we prove that they are disjoint. Let, if possible, $\lfloor\alpha m\rfloor=\lfloor\beta n\rfloor=q$. Then, $q<\alpha m, \beta n<n+1$. Now show that this brings a contradiction. Next, we need to show that their union is \mathbb{N}. Observe that we must have $1<\alpha, \beta<2$. Hence, the intervals $[\alpha m, \alpha(m+1)]$ have length greater than 1 but not more than 2 . So if some $k \in \mathbb{N}$ is missing from both the sequences, there must exists $q>0$ such that $\alpha m<q<q+1<\alpha(m+1)$ and $\beta n<q<q+1<\beta(n+1)$. Deduce that $\frac{m+n}{q}<1<\frac{m+n+2}{q+1} \Longrightarrow m+n<q<q+1<m+n+2$ which is a contradiction.
13. We induct on n. The case $n=1$ is trivially true. Suppose the assertion is true for all $n \leq k$. Then we have
$f(1) \geq f(1), f(1)+\frac{f(2)}{2} \geq f(2), \cdots, f(1)+\frac{f(2)}{2}+\frac{f(3)}{3}+\cdots+\frac{f(k)}{k} \geq f(k)$.
Adding these inequalities altogether, we get

$$
k f(1)+(k-1) \frac{f(2)}{2}+\cdots+\frac{f(k)}{k} \geq f(1)+f(2)+\cdots+f(k)
$$

Next, adding $(f(1)+f(2)+\cdots+f(k))$ to both sides, we get

$$
\begin{equation*}
(k+1)\left(f(1)+\frac{f(2)}{2}+\cdots+\frac{f(k)}{k}\right) \geq \sum_{i=1}^{k} f(i)+f(k+1-i) \tag{*}
\end{equation*}
$$

Now, by using the given condition on f, we get, $f(i)+f(k+1-i) \geq f(i+$ $k+1-i)=f(k+1)$ for each $i=1,2, \ldots k$. This combines with $(*)$ to give us,

$$
f(1)+\frac{f(2)}{2}+\cdots+\frac{f(k)}{k} \geq \frac{k}{k+1} f(k+1)=f(k+1)-\frac{f(k+1)}{k+1}
$$

This closes our induction.
14. Show that $f(n)$ equals the number of 1 's in the binary representation of n. You can prove it by induction on the number of digits (in base 2) of n.

