Problems on limit of a function

Aug 25, 2019

Definition. A deleted neighbourhood of c is a set of the form $(c-\delta, c+\delta) \backslash\{c\}$ where $\delta>0$. In some books it is denoted by $N^{\prime}(c, \delta)$.

1. Suppose that f, g are functions such that $\lim _{x \rightarrow a} f(x)=\ell_{1}$ and $\lim _{x \rightarrow a} g(x)=\ell_{2}$. Show that $\lim _{x \rightarrow a}(f(x)+g(x))=\ell_{1}+\ell_{2}$ and $\lim _{x \rightarrow a} f(x) g(x)=\ell_{1} \ell_{2}$. Furthermore, if $g(x) \neq 0$ in a deleted neighbourhood of a and $\ell_{2} \neq 0$ then show that $\lim _{x \rightarrow a} f(x) / g(x)=\ell_{1} / \ell_{2}$.
2. Suppose that $f(x) \leq g(x)$ holds for every x in a deleted neighbourhood of a. If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist then show that $\lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$.
3. Suppose that $\lim _{x \rightarrow a} f(x)$ exists (and is finite). Show that for every $\varepsilon>0$ there exists $\delta>0$ such that for every $x, y \in(a-\delta, a+\delta) \backslash\{a\}$ it holds that $|f(x)-f(y)|<\varepsilon$. (Note, here it is understood that x, y are in the domain of f, so that $f(x)$ and $f(y)$ are well-defined.)
4. Suppose that $\lim _{x \rightarrow a} f(x)=0$ and $g(x)$ is bounded in a deleted neighbourhood of a. Show that $\lim _{x \rightarrow a} f(x) g(x)=0$.
5. Suppose that $g(x) \leq f(x) \leq h(x)$ holds for every x in a deleted neighbourhood of a. If $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=\ell$ then show that $\lim _{x \rightarrow a} f(x)=\ell$.
6. Determine whether the following limits exist:

$$
\lim _{x \rightarrow 0} x \cos \frac{1}{x}, \quad \lim _{x \rightarrow 0} \frac{\lfloor x\rfloor}{x}, \quad \lim _{x \rightarrow 0} x\left\lfloor\frac{1}{x}\right\rfloor, \quad \lim _{x \rightarrow \infty} x\left(\sqrt{x^{2}+1}-\sqrt[3]{x^{3}+1}\right) .
$$

7. Suppose that f is monotonic on an open neighbourhood around a. Show that the one sided limits $\lim _{x \rightarrow a+} f(x)$ and $\lim _{x \rightarrow a-} f(x)$ must exist (need not be equal).
8. Suppose that f has IVP and f is monotone on an interval $[a, b]$. Show that f must be continuous on $[a, b]$.
9. Suppose that f is one-one and f has IVP on an interval $[a, b]$. Show that f must be continuous and monotone on $[a, b]$.
10. Let f, g be functions such that $f(g(x))$ is well-defined. If $\lim _{x \rightarrow a} g(x)=b$ and $\lim _{y \rightarrow b} f(x)=\ell$, is it necessary that $\lim _{x \rightarrow a} f(g(x))=\ell$?
11. Let f, g be functions such that $f(g(x))$ is well-defined. If $\lim _{x \rightarrow a} g(x)=b$ and $\lim _{y \rightarrow b} f(x)=\ell$. We assume further that $g(x) \neq b$ for x in a deleted neighbourhood of a. Prove that $\lim _{x \rightarrow a} f(g(x))=\ell$.
12. Suppose that f is a function which does not vanish in a deleted neighbourhood of a and satisfies $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} f(x) g(x)=\ell$. Show that

$$
\lim _{x \rightarrow a}(1+f(x))^{g(x)}=e^{\ell}
$$

13. Determine, with proof, the value of $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}+\cos x}\right)^{x^{2}+x}$.
14. Suppose that $f:(-\delta, \delta) \rightarrow \mathbb{R}$ has the property that $\lim _{x \rightarrow 0}(f(x)+f(2 x))=0$. Is it necessary that $\lim _{x \rightarrow 0} f(x)=0$?
15. For any function $f:(-\delta, \delta) \rightarrow \mathbb{R}$ show that if $\lim _{x \rightarrow 0} f(x)=\ell$ then $\lim _{x \rightarrow 0} f(|x|)=\ell$. Is the converse true?
16. Let $n \in \mathbb{N}$. Determine, with proof, the value of $\lim _{x \rightarrow 0} \frac{1-\cos (x) \cos (2 x) \cdots \cos (n x)}{x^{2}}$.
17. For $x \geq 1$ define $f(x)=\lfloor x\rfloor+(x-\lfloor x\rfloor)^{\lfloor x\rfloor}$. Show that f is continuous and strictly increasing. (Here $\lfloor x\rfloor$ denotes the largest integer $\leq x$.)
18. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a monotonic function such that $\lim _{x \rightarrow \infty} \frac{f(2 x)}{f(x)}=1$. Prove that for any $c \geq 1$, it holds that $\lim _{x \rightarrow \infty} \frac{f(c x)}{f(x)}=1$.
19. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a function such that for each $a \geq 0, \lim _{n \rightarrow \infty} f(a+n)=0$. Is it necessary that $\lim _{n \rightarrow \infty} f(x)=0$?
20. Suppose that $f:(-\delta, \delta) \rightarrow(0, \infty)$ has the property that $\lim _{x \rightarrow 0}\left(f(x)+\frac{1}{f(x)}\right)=2$. Show that $\lim _{x \rightarrow 0} f(x)=1$. (It is not given that this limit exists.)
