Problems on limit of a function Aug 25, 2019

Definition. A deleted neighbourhood of c is a set of the form $(c - \delta, c + \delta) \setminus \{c\}$ where $\delta > 0$. In some books it is denoted by $N'(c, \delta)$.

- 1. Suppose that f, g are functions such that $\lim_{x \to a} f(x) = \ell_1$ and $\lim_{x \to a} g(x) = \ell_2$. Show that $\lim_{x \to a} (f(x) + g(x)) = \ell_1 + \ell_2$ and $\lim_{x \to a} f(x)g(x) = \ell_1\ell_2$. Furthermore, if $g(x) \neq 0$ in a deleted neighbourhood of a and $\ell_2 \neq 0$ then show that $\lim_{x \to a} f(x)/g(x) = \ell_1/\ell_2$.
- 2. Suppose that $f(x) \leq g(x)$ holds for every x in a deleted neighbourhood of a. If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist then show that $\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x)$.
- 3. Suppose that $\lim_{x\to a} f(x)$ exists (and is finite). Show that for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $x, y \in (a \delta, a + \delta) \setminus \{a\}$ it holds that $|f(x) f(y)| < \varepsilon$. (Note, here it is understood that x, y are in the domain of f, so that f(x) and f(y) are well-defined.)
- 4. Suppose that $\lim_{x \to a} f(x) = 0$ and g(x) is bounded in a deleted neighbourhood of a. Show that $\lim_{x \to a} f(x)g(x) = 0$.
- 5. Suppose that $g(x) \leq f(x) \leq h(x)$ holds for every x in a deleted neighbourhood of a. If $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = \ell$ then show that $\lim_{x \to a} f(x) = \ell$.
- 6. Determine whether the following limits exist:

$$\lim_{x \to 0} x \cos \frac{1}{x}, \quad \lim_{x \to 0} \frac{\lfloor x \rfloor}{x}, \quad \lim_{x \to 0} x \lfloor \frac{1}{x} \rfloor, \quad \lim_{x \to \infty} x \left(\sqrt{x^2 + 1} - \sqrt[3]{x^3 + 1} \right).$$

- 7. Suppose that f is monotonic on an open neighbourhood around a. Show that the one sided limits $\lim_{x \to a^+} f(x)$ and $\lim_{x \to a^-} f(x)$ must exist (need not be equal).
- 8. Suppose that f has IVP and f is monotone on an interval [a, b]. Show that f must be continuous on [a, b].
- 9. Suppose that f is one-one and f has IVP on an interval [a, b]. Show that f must be continuous and monotone on [a, b].

- 10. Let f, g be functions such that f(g(x)) is well-defined. If $\lim_{x \to a} g(x) = b$ and $\lim_{y \to b} f(x) = \ell$, is it necessary that $\lim_{x \to a} f(g(x)) = \ell$?
- 11. Let f, g be functions such that f(g(x)) is well-defined. If $\lim_{x \to a} g(x) = b$ and $\lim_{y \to b} f(x) = \ell$. We assume further that $g(x) \neq b$ for x in a deleted neighbourhood of a. Prove that $\lim_{x \to a} f(g(x)) = \ell$.
- 12. Suppose that f is a function which does not vanish in a deleted neighbourhood of a and satisfies $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} f(x)g(x) = \ell$. Show that

$$\lim_{x \to a} (1 + f(x))^{g(x)} = e^{\ell}$$

- 13. Determine, with proof, the value of $\lim_{x \to \infty} \left(1 + \frac{1}{x^2 + \cos x}\right)^{x^2 + x}$.
- 14. Suppose that $f: (-\delta, \delta) \to \mathbb{R}$ has the property that $\lim_{x \to 0} (f(x) + f(2x)) = 0$. Is it necessary that $\lim_{x \to 0} f(x) = 0$?
- 15. For any function $f: (-\delta, \delta) \to \mathbb{R}$ show that if $\lim_{x \to 0} f(x) = \ell$ then $\lim_{x \to 0} f(|x|) = \ell$. Is the converse true ?

16. Let $n \in \mathbb{N}$. Determine, with proof, the value of $\lim_{x \to 0} \frac{1 - \cos(x) \cos(2x) \cdots \cos(nx)}{x^2}$.

- 17. For $x \ge 1$ define $f(x) = \lfloor x \rfloor + (x \lfloor x \rfloor)^{\lfloor x \rfloor}$. Show that f is continuous and strictly increasing. (Here $\lfloor x \rfloor$ denotes the largest integer $\le x$.)
- 18. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a monotonic function such that $\lim_{x \to \infty} \frac{f(2x)}{f(x)} = 1$. Prove that for any $c \ge 1$, it holds that $\lim_{x \to \infty} \frac{f(cx)}{f(x)} = 1$.
- 19. Let $f : [0, +\infty) \to \mathbb{R}$ be a function such that for each $a \ge 0$, $\lim_{n \to \infty} f(a+n) = 0$. Is it necessary that $\lim_{n \to \infty} f(x) = 0$?
- 20. Suppose that $f: (-\delta, \delta) \to (0, \infty)$ has the property that $\lim_{x \to 0} \left(f(x) + \frac{1}{f(x)} \right) = 2$. Show that $\lim_{x \to 0} f(x) = 1$. (It is not given that this limit exists.)