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1. Start with an equilateral triangle with unit side length. Subdivide it into four smaller

congruent equilateral triangles and remove the central triangle. Repeat last step with

each of the remaining smaller triangles.

Denote by P (n) and A(n) the perimeter and area of the existing portion of the

triangle at the n-th step, e.g. P (2) = 9/2 unit and A(2) = 3
√

3/16 sq.unit. Find

lim
n→∞

P (n) and lim
n→∞

A(n). Are you surprised?

Solution: It can be proved by induction on n that

P (n + 1) =
3

2
P (n) and A(n + 1) =

3

4
A(n)

holds for every n ≥ 1. Hence we get P (n) = P (1)
(
3
2

)n−1
and A(n) = A(1)

(
3
4

)n−1
for every n ≥ 1. Since 0 < 3/4 < 1, we know that (3/4)n → 0 as n → ∞, which

implies that lim
n→∞

A(n) = 0. On the other hand, since 3/2 > 1, we know that (3/2)n

diverges to +∞ as n→∞. Therefore, we can write lim
n→∞

P (n) =∞.

Comment: The result might be little surprising, because the limiting figure has

an infinite perimeter but its area is zero. This limiting figure is known as the

Sierpinski Triangle. To know more, you may search about it on Google.

2. Let xn be a sequence of integers such that xk+1 6= xk holds for every k ≥ 1. Show

that xn can not be a Cauchy sequence. Is it possible that xn has a convergent

subsequence?

Solution: (Main idea: the sequence can’t be Cauchy because for the terms to get

arbitrarily closed, the sequence must be eventually constant which contradicts the

given hypothesis.) Let, if possible, xn be a Cauchy sequence. Then, for ε = 1/2,

there exists N ∈ N such that |xm − xn| < ε holds for every m,n ≥ N. But the

terms of the sequence being integers, |xm − xn| < 1/2 forces xm = xn for every

n ≥ N. This contradicts the fact that xN+1 6= xN .
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The sequence may have a convergent subsequence. Consider, for example, the

sequence xn = (−1)n for n ≥ 1.

3. Suppose that f : [0, 2]→ R is continuous. Show that there exists a, b ∈ R such that

b− a = 1 and f(b)− f(a) = 1
2
(f(2)− f(0)).

Solution: Consider the function g(x) = f(x+1)−f(x). Observe that g(0)+g(1) =

f(2)− f(0). Therefore 1
2
(f(2)− f(0)) is just the average of g(0) and g(1); lets call

it y. Since y lies between g(0) and g(1) and g is continuous, there exists 0 ≤ a ≤ 1

such that g(a) = y =⇒ f(a + 1)− f(a) = y = 1
2
(f(2)− f(0)).

4. Suppose that f, g : [0, 1] → [0, 1] are continuous functions such that f(g(x)) =

g(f(x)) holds for every x ∈ [0, 1].

(a) (5 marks) Show that there exists b ∈ [0, 1] such that f(b) = b.

(b) (10 marks) Show that there exists c ∈ [0, 1] such that f(c) = g(c).

Solution:

(a) Consider g(x) = f(x) − x, 0 ≤ x ≤ 1. Since 0 ≤ f(x) ≤ 1 holds for every

0 ≤ x ≤ 1, hence we have g(0) ≥ 0 and g(1) ≤ 0. Therefore, either one among

g(0) and g(1) equals zero; else they have opposite signs which implies that

there exists some b ∈ (0, 1) such that g(b) = 0. And g(b) = 0 =⇒ f(b) = b.

(b) We construct a sequence, starting with a0 = b (the same b as in part (a))

and define an+1 = g(an) for every n ≥ 1. Observe that f(a0) = a0, f(a1) =

f(g(a0)) = g(f(a0)) = g(a0) = a1. We can induct on n to prove f(an) = an
for every n ≥ 1. (Inductive step: Assuming f(an) = an, we get f(an+1) =

f(g(an)) = g(f(an)) = g(an) = an+1.) Next we shall examine whether an is

monotonic. Consider h(x) = f(x) − g(x). If h(0) = 0 or h(1) = 0, or if h(x)

changes sign inside [0, 1] then there exists c ∈ [0, 1] such that h(c) = 0, as

required. Let us assume to the contrary that h(x) never vanishes inside [0, 1].

Since h is continuous, we must have either h(x) > 0 for all x ∈ [0, 1]; or

h(x) < 0 for all x ∈ [0, 1].

Case 1: h(x) > 0, i.e. f(x) > g(x) for all x ∈ [a, b]. In this case, we have

an+1 = g(an) < f(an) = an for every n ≥ 0. Therefore, an is monotonically

decreasing in this case.

Case 2: h(x) < 0, i.e. f(x) < g(x) for all x ∈ [a, b]. In this case, we have

an+1 = g(an) > f(an) = an for every n ≥ 0. Therefore, an is monotonically

increasing in this case.
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Therefore, in both of the above cases, the sequence an is monotonic and it

is bounded inside [0, 1], hence lim an exists. Let us call lim an = a. Letting

n → ∞ in f(an) = an and g(an) = an+1, and using the fact that f, g are

continuous, we get f(a) = a = g(a). This is actually a contradiction, because

we started with the assumption that h(x) 6= 0 on [0, 1] and arrived at h(a) = 0.

Hence our proof is complete.
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