Ramanujan School of Mathematics
 Class Test on Calculus

Sept 2019

Total marks: $10 \times 5=50$
Time: 2 hours.
Attempt all the questions. Answers without proper explanations will fetch zero. Show all your rough work - partial solutions may be rewarded. You can use any theorem/result without proving it again; but you have to state it properly.

1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $f(x) \neq x$ for every $x \in \mathbb{R}$. Is it possible that there exists some $c \in \mathbb{R}$ such that $f(f(c))=c$?
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function satisfying $f(2 x)=3 f(x)$ for every $0 \leq x \leq 1 / 2$. If f is bounded, show that $\lim _{x \rightarrow 0+} f(x)=f(0)$.
3. Determine, with proof, whether the following statements are true or false: (If true then provide a proof, else provide a counter-example)
(a) If $\lim _{x \rightarrow 0} f(x)=c$ then $\lim _{x \rightarrow 0} f(\sin x)=c$.
(b) If $\lim _{x \rightarrow 0} f(\sin x)=c$ then $\lim _{x \rightarrow 0} f(x)=c$.
4. Determine, with proof, the value of the following limit

$$
\lim _{n \rightarrow \infty} \tan ^{n}\left(\frac{\pi}{4}+\frac{1}{n}\right)
$$

5. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that given any two points $x_{1}<x_{2}$, there exists a point x_{3} between x_{1} and x_{2} such that $f\left(x_{3}\right)=g\left(x_{3}\right)$. Show that $f(x)=g(x)$ for every $x \in \mathbb{R}$.

Do not cheat to yourself. All the best!

