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Limit, Continuity and Differentiability
of Functions

In this chapter we shall study limit and continuity of real valued functions defined
on certain sets.

2.1 Limit of a Function

Suppose f is a real valued function defined on a subset D of R. We are going to
define limit of f(x) as x ∈ D approaches a point a which is not necessarily in D.

First we have to be clear about what we mean by the statement “x ∈ D ap-
proaches a point a”.

2.1.1 Limit point of a set D ⊆ R

Definition 2.1 Let D ⊆ R and a ∈ R. Then a is said to be a limit point of D
if for any δ > 0, the interval (a− δ, a+ δ) contains atleast one point from D other
than possibly a, i.e.,

D ∩ {x ∈ R : 0 < |x− a| < δ} 6= ∅.

�

Example 2.1 The statements in the following can be easily verified:

(i) Every point in an interval is its limit point.

(ii) If I is an open interval of finite length, then both the end points of I are
limit points of I.

(iii) The set of all limit points of an interval I of finite length consists of points
from I together with its endpoints.

(iv) If D = {x ∈ R : 0 < |x| < 1}, then every point in the interval [−1, 1] is a
limit point of D.

(v) If D = (0, 1) ∪ {2}, then 2 is not a limit point of D. The set of all limit
points of D is the closed interval [0, 1].
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(vi) If D = { 1n : n ∈ N}, then 0 is the only limit point of D.

(vii) If D = {n/(n+ 1) : n ∈ N}, then 1 is the only limit point of D. �

For the later use, we introduce the following definition.

Definition 2.2 (i) For a ∈ R, an open interval of the form (a− δ, a+ δ) for some
δ > 0 is called a neighbourhood of a; it is also called a δ-neighbourhood of
a.

(ii) By a deleted neighbourhood of a point a ∈ R we mean a set of the form
Dδ := {x ∈ R : 0 < |x− a| < δ} for some δ > 0, i.e., the set (a− δ, a+ δ) \ {a}. �

With the terminologies in the above definition, we can state the following:

• A point a ∈ R is a limit point of D ⊆ R if and only if every deleted neigh-
bourhood of a contains at least one point of D.

In particular, ifD contains either a deleted neighbourhood of a or ifD contains
an open interval with one of its end points is a, then a is a limit point of D.

Now we give a characterization of limit points in terms of convergence of se-
quences.

Theorem 2.1 A point a ∈ R is a limit point of D ⊆ R if and only if there exists a
sequence (an) in D \ {a} such that an → a as n→∞.

Proof. Suppose a ∈ R is a limit point of D. Then for each n ∈ N, there exists
an ∈ D \ {a} such that an ∈ (a− 1/n, a+ 1/n). Note that that an → a.

Conversely, suppose that there exists a sequence (an) in D\{a} such that an → a.
Hence, for every δ > 0, there exists N ∈ N such that an ∈ (a−δ, a+δ) for all n ≥ N .
In particular, for n ≥ N , an ∈ (a− δ, a+ δ) ∩ (D \ {a}).

Exercise 2.1 Prove that a point a ∈ R is a limit point of D ⊂ R if and only if there
exists a sequence (an) in D such that (an) is not eventually constant and an → a
as n → ∞. [Recall that a sequence (an) is said to be eventually constant if there
exists k ∈ N such that an = ak for all n ≥ k. ] J

2.1.2 Limit of a function f(x) as x approaches a

Definition 2.3 Let f be a real valued function defined on a set D ⊆ R, and let
a ∈ R be a limit point of D. We say that b ∈ R is a limit of f(x) as x approaches
a if for every ε > 0, there exists δ > 0 such that

|f(x)− b| < ε whenever x ∈ D, 0 < |x− a| < δ, (∗)

and in that case we write
lim
x→a

f(x) = b
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or
f(x)→ b as x→ a.

�

The relations in (∗) in the above examples can also be written as

x ∈ D, 0 < |x− a| < δ =⇒ |f(x)− b| < ε.

Exercise 2.2 Thus, lim
x→a

f(x) = b if and only if for every open interval Ib containing

b there exists an open interval Ia containing a such that

x ∈ Ia ∩ (D \ {a}) =⇒ f(x) ∈ Ib.

J

CONVENTION: In the following, whenever we talk about limit of a function f
as x approaches a ∈ R, we assume that f is defined on a set D ⊆ R and a is a limit
point of D.

Also, when we talk about f(x), we assume that x belongs to the domain of f .
For example, if we say that “f(x) has certain property P for every x in an interval
I”, what we mean actualy is that “f(x) has the property P for all x ∈ I ∩D, where
D is he domain of f”.

Exercise 2.3 Show that, a function cannot have more than one limits. J

Example 2.2 Let D be an interval and a is either in D or a is an end point of D.

(i) Let f(x) = x. Since

|f(x)− a| = |x− a| ∀x ∈ D,

it follows that for any ε > 0, |f(x)− a| < ε whenever 0 < |x− a| < δ := ε. Hence,
lim
x→a

f(x) = a.

(ii) Let f(x) = x2 and ε > 0 be given. We show that lim
x→a

f(x) = a2. Note that

|f(x)− a2| = (|x|+ |a|)|x− a| ∀x ∈ D, x 6= a.

Since |x| ≤ |x− a|+ |a| ≤ 1 + |a| whenever |x− a| < 1, we have

|f(x)− a2| = (1 + 2|a|)|x− a| ∀x ∈ D, 0 < |x− a| ≤ 1.

Therefore,

x ∈ D, 0 < |x− a| ≤ 1, (1 + 2|a|)|x− a| < ε =⇒ |f(x)− a2| < ε.

Thus,

x ∈ D, 0 < |x− a| < δ := min{1, ε/(1 + 2|a|)} =⇒ |f(x)− a2| < ε.

Hence, lim
x→a

f(x) = a2. �
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More examples will be considered in Section 2.1.4 after proving some properties
of the limit. Before that let us ask the following question.

Question: Suppose f is a real valued function defined on an interval I and a ∈ I.
What do we mean by the statement that “ lim

x→a
f(x) does not exist”?

It means the following: For any b ∈ R, there exists ε > 0 such that for any δ > 0,
there is atleast one xδ ∈ (a− δ, a+ δ) such that f(xδ) 6∈ (b− ε, b+ ε).

We illustrate this by a simple example.

Example 2.3 Let f : [−1, 1] → R be defined by f(x) =

{
0, −1 ≤ x ≤ 0,
1, 0 < x ≤ 1.

We

show that lim
x→0

f(x) does not exist. For this let b ∈ R. Let us consider the following
cases:

Case (i): b = 0. In this case, if 0 < ε < 1, then (b − ε, b + ε) does not contain 1 so
that f(x) 6∈ (b− ε, b+ ε) for any x > 0.

Case (ii): b = 1. In this case, if 0 < ε < 1, then (b− ε, b+ ε) does not contain 0 so
that f(x) 6∈ (b− ε, b+ ε) for any x < 0.

Case (iii): b 6= 0, b 6= 1. In this case, if 0 < ε < min{|b|, |b− 1|}, then (b− ε, b+ ε)
does not contain 0 and 1 so that f(x) 6∈ (b− ε, b+ ε) for any x 6= 0.

Thus, b is not a limit of f(x) as x approaches 0. �

Before going further, let us observe a property which would be used in the due
course.

Theorem 2.2 If lim
x→a

f(x) = b, then there exists a deleted neighbourhood Dδ of a

and M > 0 such that |f(x)| ≤M for all x ∈ Dδ ∩D.

Proof. Suppose lim
x→a

f(x) = b. Then there exists a deleted neighbourhood Dδ of

a such that |f(x)− b| < 1 for all x ∈ D ∩Dδ. Hence,

|f(x)| ≤ |f(x)− b|+ |b| < 1 + |b| ∀x ∈ D ∩Dδ.

Thus, |f(x)| ≤M = 1 + |b| for all x ∈ Dδ ∩D.

2.1.3 Limit of a function in terms of sequences

Let a be a limit point of D ⊆ R and f : D → R.

Suppose lim
x→a

f(x) = b. Since a is a limit point of D, we know that there exists a

sequence (xn) in D \ {a} such that xn → a. Does f(xn)→ b? The answer is “yes”.
In fact, we have more!

Theorem 2.3 If lim
x→a

f(x) = b, then for every sequence (xn) in D such that xn → a,

we have f(xn)→ b.
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Proof. Suppose lim
x→a

f(x) = b. Let (xn) be a sequence in D such that xn → a. Let

ε > 0 be given. We have to show that there exists n0 ∈ N such that |f(xn)− b| < ε
for all n ≥ n0.

Since lim
x→a

f(x) = b, we know that there exists δ > 0 such that

x ∈ D, 0 < |x− a| < δ =⇒ |f(x)− b| < ε. (∗)

Also, since xn → a, there exists n0 ∈ N such that |xn−a| < δ for all n ≥ n0. Hence,
from (∗), we have |f(xn)− b| < ε for all n ≥ n0.

The converse of the above theorem is also true.

Theorem 2.4 If for every sequence (xn) in D which converges to a, the sequence
(f(xn)) converges to b, then lim

x→a
f(x) = b.

Proof. Suppose for every sequence (xn) in D which converges to a, the sequence
(f(xn)) converges to b. Assume for a moment that f does not have the limit b as x
approaches a. Then, by the definition of the limit, there exists ε0 > 0 such that for
every δ > 0, there exists at least one xδ ∈ D such that

0 < |xδ − a| < δ and |f(xδ)− b| > ε0.

In particular, for every n ∈ N, there exists xn ∈ D such that

0 < |xn − a| <
1

n
and |f(xn)− b| > ε0.

Thus, xn → a but f(xn) 6→ b. This is a contradiction to our hypothesis.

Remark 2.1 Here are some implications of the first part of Theorem 2.3. Suppose
(xn) is a a sequence in D \ {a} such that xn → a.

1. If (f(xn)) does not converge, then lim
x→a

f(x) does not exist.

2. If (f(xn)) does not converge to a given b ∈ R, then either lim
x→a

f(x) does not

exist or lim
x→a

f(x) exists but lim
x→a

f(x) 6= b.

3. If (yn) is another sequence in D \ {a} which converges to a and the sequences
(f(xn)) and (f(yn)) converge to different points, then lim

x→a
f(x) does not exist.

If we are able to show the convergence of (f(xn)) to some b for any arbitrary (not
for a specific) sequence (xn) in D \ {a} which converges to a, then by second part
of Theorem 2.3, we can assert that lim

x→a
f(x) = b. �
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Example 2.4 Consider the function f in Example 2.3, i.e., f : [−1, 1] → R is

defined by f(x) =

{
0, −1 ≤ x ≤ 0,
1, 0 < x ≤ 1.

Suppose (xn) is a sequence of negative numbers and (yn) is a sequence of positive
numbers such that both of them converge to 0. Then we have f(xn) = 0 and
f(yn) = 1 for all n ∈ N. Hence, lim

n→∞
f(xn) and lim

n→∞
f(yn) exist, but they are

different. Hence lim
x→0

f(x) does not exist. �

2.1.4 Some properties

The following two theorems can be proved using Theorems 2.3 and 2.4, and the
results on convergence of sequences of real numbers.

Theorem 2.5 We have the following.

(i) If lim
x→a

f(x) = b and lim
x→a

g(x) = c, then

lim
x→a

[f(x) + g(x)] = b+ c, lim
x→a

f(x)g(x) = bc.

(ii) If lim
x→a

f(x) = b and b 6= 0, then f(x) 6= 0 in a deleted neighbourhood of a

and

lim
x→a

1

f(x)
=

1

b
.

Theorem 2.6 (Sandwich theorem) If f and g have the same limit b as x ap-
proaches a, and if h is a function such that f(x) ≤ h(x) ≤ g(x) for all x in a deleted
neighbourhood of a, then lim

x→a
h(x) = b.

The following two corollaries are immediate from Theorem 2.5.

Corollary 2.7 If lim
x→a

f(x) = b, lim
x→a

g(x) = c, and c 6= 0, then g is nonzero in a

deleted neighbourhood of c and

lim
x→a

f(x)

g(x)
=
b

c
.

Corollary 2.8 If lim
x→a

f(x) = b, lim
x→a

g(x) = c and f(x) ≥ g(x) for all x in a deleted

neighbourhood of a, then b ≥ c.

Exercise 2.4 Write detailed proof of Theorem 2.5, Theorem 2.6 and Corollary 2.7
and Corollary 2.8. J

Theorem 2.9 Suppose lim
x→a

f(x) = b and lim
y→b

g(y) = c. If D1 and D2 are the

domains of f and g respectively, and if f(x) ∈ D2 \ {b} for every x ∈ D1 \ {a}, then
lim
x→a

g(f(x)) = c.
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Proof. By Theorem 2.6, it is enough to prove that for any sequence (xn) in
D1\{a} such that xn → a, we have g(f(xn))→ c. So, let (xn) be inD1\{0} such that
xn → a. Since lim

x→a
f(x) = b, by Theorem 2.5, f(xn) → b. Let yn = f(xn), n ∈ N.

By the assumption, yn ∈ D2 \ {b} for all n ∈ N. Since lim
y→b

g(y) = c and yn → b,

again by Theorem 2.5, g(yn)→ c. Thus we obtained g(f(xn)→ c, which completes
the proof.

Alternate proof using ε− δ arguments. Let ε > 0 be given. Then there exists
δ1 > 0 such that

0 < |y − b| < δ1 =⇒ |g(y)− c| < ε.

Also, let δ2 > 0 be such that

0 < |x− a| < δ2 =⇒ |f(x)− b| < δ1.

Hence, along with the given condition that f(x) ∈ D2 \ {b} for every x ∈ D1 \ {a},

0 < |x− a| < δ2 =⇒ 0 < |f(x)− b| < δ1 =⇒ |g(f(x))− c| < ε.

This completes the proof.

Exercise 2.5 Suppose ϕ is a function defined in a neighbourhood of a point x0
such that lim

x→x0
ϕ(x) = x0. If f is also a function defined in a neighbourhood of x0

and lim
x→x0

f(x) exists, then prove that lim
x→x0

f(ϕ(x)) exists and

lim
x→x0

f(ϕ(x)) = lim
x→x0

f(x).

J

Example 2.5 If f(x) is a polynomial, say f(x) = a0 + a1x + . . . + akx
k, then for

any a ∈ R,
lim
x→a

f(x) = f(a).

We obtain this by using Theorem 2.5. Let us show the same by using the
definition, i.e., using ε− δ arguments: Let b = f(a) and let ε > 0 be given. We have
to find δ > 0 such that |x− a| < δ =⇒ |f(x)− b| < ε. Note that

f(x)− f(a) = a1(x− a) + a2(x
2 − a2) + . . .+ ak(x

k − ak),

where
xn − an = (x− a)[xn−1 + xn−2a+ . . .+ xan−2 + an−1].

Now, suppose |x− a| < 1. Then we have |x| < 1 + |a| so that

|xn−jaj−1| < (1 + |a|)n−1

and hence,
|xn − an| < |x− a|n(1 + |a|)n−1.
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Thus, |x− a| < 1 implies

|f(x)− f(a)| ≤ |x− a|
(
|a1|+ |a2|2(1 + |a|) + . . .+ |ak|k(1 + |a|)k−1

)
,

Therefore, taking α := |a1|+ |a2|2(1 + |a|) + . . .+ |ak|k(1 + |a|)k−1, we have

|f(x)− f(a)| < ε whenever |x− a| < δ := min{1, ε/α}.

�

Example 2.6 Let D = R \ {2} and f(x) = x2−4
x−2 . Then lim

x→2
f(x) = 4.

Note that, for x 6= 2,

f(x) =
(x+ 2)(x− 2)

x− 2
= (x+ 2).

Hence, for ε > 0, |f(x)− 4| < ε whenever |x− 2| < δ := ε. �

Example 2.7 Let D = R\{0} and f(x) = 1
x . Then lim

x→0
f(x) does not exist. To see

this consider the sequence (xn) with xn = 1/n for n ∈ N. Then we have xn → 0 but
{f(xn)} diverges to infinity. Therefore, by Theorem 2.3, lim

x→0
f(x) does not exist.

Alternatively, for any b ∈ R,

|f(x)− b| ≥ |f(x)| − |b| > 1 whenever |f(x)| > 1 + |b|.

But,

|f(x)| > 1 + |b| ⇐⇒ |x| < 1

1 + |b|
.

Thus, for any b ∈ R,

|f(x)− b| > 1 whenever |x| < 1

1 + |b|
.

Thus, we have proved that it is not possible to find a δ > 0 such that |f(x)− b| < 1
for all x with |x| < δ. �

Example 2.8 We show that (i) lim
x→0

sin(x) = 0 and (ii) lim
x→0

cos(x) = 1.

From the graph of the function sinx, it is clear that

−π
2
< x < 0 =⇒ 0 < | sinx| < |x|.

Hence, from Theorem 2.6, we have lim
x→0
| sinx| = 0. Thus, lim

x→0
sin(x) = 0.

Also, since cosx = 1− 2 sin2(x/2) and lim
x→0

sin(x/2) = 0, Theorem 2.5(i) implies

lim
x→0

cosx = 1. �
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Example 2.9 We show that lim
x→0

sinx

x
= 1.

It can be seen, using the graph of sinx that

0 < x <
π

2
=⇒ sinx < x < tanx.

Hence,

0 < x <
π

2
=⇒ cosx <

sinx

x
< 1.

Since sin(−x)
−x = sinx

x and cos(−x) = cosx, it follows that

0 < |x| < π

2
=⇒ cosx <

sinx

x
< 1.

Therefore, by Theorem 2.5(iv) and Example 2.8(ii), we have lim
x→0

sinx

x
= 1. �

Remark 2.2 In the above two examples we have used some properties of the func-
tions sinx, cosx and tanx, though we have not defined these functions formally.
We shall define these functions formally in the due course. �

Exercise 2.6 Let f : R→ R be such that f(x+y) = f(x)+f(y). Suppose lim
x→0

f(x)

exists. Prove that lim
x→0

f(x) = 0 and lim
x→c

f(x) = f(c) for every c ∈ R.

Hint: Use the facts that f(2x) = 2f(x), Theorem 2.9 and f(x)− f(c) = f(x− c). J

Exercise 2.7 Suppose ϕ is a function defined in a neighbourhood I0 of a point x0
such that

x ∈ I0, |x− x0| < r =⇒ |ϕ(x)− x0| < r ∀ r > 0.

If f is also a function defined in a neighbourhood of x0 and lim
x→x0

f(x) exists, then

prove that lim
x→x0

f(ϕ(x)) exists and limx→x0 f(ϕ(x)) = limx→x0 f(x). J

2.1.5 Left limit and right limit

Definition 2.4 Let f be a real valued function defined on a set D ⊆ R, and let
a ∈ R be a limit point of D.

(i) We say that f(x) has the left limit b ∈ R as x approaches a if for every
ε > 0, there exists δ > 0 such that

|f(x)− b| < ε whenever x ∈ D, a− δ < x < a,

and in that case we write limx→a− f(x) = b.

(ii) We say that f(x) has the right limit b ∈ R as x approaches a if for
every ε > 0, there exists δ > 0 such that

|f(x)− b| < ε whenever x ∈ D, a < x < a+ δ,

and in that case we write lim
x→a+

f(x) = b. �
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We shall use the notations:

f(x0−) := lim
x→x0−

f(x), f(x0−) := lim
x→x0+

f(x)

whenever the above limits exists.

We have the following characterizations in terms of sequences (Verify):

1. lim
x→a−

f(x) = b if and only if for every sequence (xn) in D \ {a},

xn < a ∀n ∈ N, xn → a =⇒ f(xn)→ b.

2. lim
x→a+

f(x) = b if and only if for every sequence (xn) in D \ {a},

xn > a ∀n ∈ N, xn → a =⇒ f(xn)→ b.

The proof of the following theorem is left as an exercise.

Theorem 2.10 Let f be a real valued function defined on a set D ⊆ R, and let
a ∈ R be a limit point of D. Then lim

x→a
f(x) exists if and only if lim

x→a−
f(x) and

lim
x→a+

f(x) exist and lim
x→a−

f(x) = lim
x→a+

f(x), and in that case

lim
x→a

f(x) = lim
x→a−

f(x) = lim
x→a+

f(x).

In view of the above theorem, if lim
x→a−

f(x) does not exist or lim
x→a+

f(x) does

not exist or both lim
x→a−

f(x) and lim
x→a+

f(x) exist but lim
x→a−

f(x) 6= lim
x→a+

f(x), then

lim
x→a

f(x) does not exist.

Example 2.10 Let us consider the a few examples to illustrate Theorem 2.10.

(i) Let f : R→ R be defined by

f(x) =

{
1/x, x > 0,
1, x ≤ 0.

In this case we see that lim
x→0−

f(x) = 1, but lim
x→0+

f(x) does not exist.

(ii) Let f : R→ R be defined by

f(x) =

{
1/x, x < 0,
1, x ≥ 0.

In this case we see that lim
x→0+

f(x) = 1, but lim
x→0−

f(x) does not exist.
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(iii) Let f : R→ R be defined by

f(x) =

{
1/x, x 6= 0,
1, x = 0.

In this case, both lim
x→0+

f(x) and lim
x→0−

f(x) do not exist.

(iv) Let f be as in Example 2.3, that is, f : [−1, 1]→ R defined by

f(x) =

{
0, −1 ≤ x ≤ 0,
1, 0 < x ≤ 1.

In this case both lim
x→0−

f(x) and lim
x→0+

f(x) exist, but lim
x→0

f(x) does not exist. �

2.1.6 Limit at ∞ and at −∞

Definition 2.5 Suppose a function f is defined on an interval of the form (a,∞)
for some a ∈ R. Then we say that f(x) has the limit b as x → ∞, if for every
ε > 0, there exits M > a such that

|f(x)− b| < ε whenever x > M,

and in that case we write lim
x→∞

f(x) = b �

Definition 2.6 Suppose a function f is defined on an interval of the form (−∞, a)
for some a ∈ R. Then we say that f(x) has the limit b as x → −∞, if for every
ε > 0, there exits M < a such that

|f(x)− b| < ε whenever x < M,

and in that case we lim
x→−∞

f(x) = b, �

Definition 2.7 For a ∈ R, the interval (a,∞) is called a neighbourhood of ∞
and the interval (−∞, a) is called a neighbourhood of −∞. �

Now, we give the sequential characterization of limits at ∞ and at −∞.

Theorem 2.11 The following hold.

(i) Let f is defined in a neighbourhood D1 of ∞ and b ∈ R. Then lim
x→∞

f(x) = b

if and only if for every sequence (xn) in D1 with xn →∞, f(xn)→ b.

(ii) Let f is defined in a neighbourhood D2 of −∞ and b ∈ R. Then lim
x→−∞

f(x) = b

if and only if for every sequence (xn) in D2 with xn →∞, f(xn)→ b.

Proof. Suppose lim
x→∞

f(x) = b, and let (xn) be in D1 such that xn → ∞. Let

ε > 0 be given. To show show that there exists N ∈ N such that |f(xn)− b| < ε for
all n ≥ N . Since lim

x→∞
f(x) = b, there exists M > 0 such that

x ∈ D1, x > M =⇒ |f(x)− b| < ε. (1)
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Since xn →∞, there exists n0 ∈ N such that

n ≥ n0 =⇒ xn > M. (2).

From (1) and (2) above we have

n ≥ n0 =⇒ |f(xn)− b| < ε.

Thus, we have proved (i). Analogously we obtain proof of (ii).

The following can be verified by applying Theorem 2.11.

1. If lim
x→∞

f(x) = b and lim
x→∞

g(x) = c, then

lim
x→∞

[f(x) + g(x)] = b+ c, lim
x→∞

f(x)g(x) = bc.

2. If If lim
x→∞

f(x) = b, lim
x→∞

g(x) = c and c 6= 0, then there exists M0 > 0 such

that g(x) 6= 0 for all x > M0 and

lim
x→∞

f(x)

g(x)
=
b

c
.

Example 2.11 (i) We show that lim
x→∞

1

x
= 0. Taking f(x) =

1

x
for x 6= 0, b = 0

and ε > 0, we observe that

|f(x)− b| < ε ⇐⇒ 1

|x|
< ε ⇐⇒ |x| > 1

ε
.

Hence,
x > 1/ε =⇒ |x| > 1/ε =⇒ |f(x)− b| < ε.

This shows that |f(x)− b| < ε whenever x > M := 1/ε.

(ii) We show that lim
x→−∞

1

x
= 0. As before, taking f(x) =

1

x
for x 6= 0, b = 0

and ε > 0, we observe that

|f(x)− b| < ε ⇐⇒ 1

|x|
< ε ⇐⇒ |x| > 1

ε
.

Hence,
x < −1/ε =⇒ |x| > 1/ε =⇒ |f(x)− b| < ε.

This shows that |f(x)− b| < ε whenever x < M := −1/ε.

(iii) We show that lim
x→∞

1

x2
= 0. Taking f(x) =

1

x2
for x 6= 0, b = 0 and ε > 0,

we observe that

|f(x)− b| < ε ⇐⇒ 1

x2
< ε ⇐⇒ |x| > 1√

ε
.
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Hence,

x > 1/
√
ε =⇒ |x| > 1/

√
ε =⇒ |f(x)− b| < ε.

This shows that |f(x)− b| < ε whenever x > M := 1/
√
ε.

(iv) We show that lim
x→∞

1 + x

1 + x2
= 0. Let f(x) =

1 + x

1 + x2
for x ∈ R. The, by (i)

and (iii) above,

f(x) =
1 + x

1 + x2
=

1/x2 + 1/x

1/x2 + 1
→ 0

1
= 0.

(v) We show that lim
x→∞

1 + x

1− x
= −1. Let f(x) =

1 + x

1− x
for x 6= 1. By (i) above,

f(x) =
1 + x

1− x
=

1/x+ 1

1/x− 1
→ 1

−1
= −1.

(vi) We show that lim
x→∞

1 + 2x

1 + 3x
=

2

3
. Let f(x) =

1 + 2x

1 + 3x
for x 6= −1/3. Then,

by (i),

f(x) =
1 + 2x

1 + 3x
=

1/x+ 2

1/x+ 3
=

2

3
.

�

Definition 2.8 We define the following:

1. lim
x→a

f(x) =∞ if for every M > 0, there exists δ > 0 such that

0 < |x− a| < δ =⇒ f(x) > M.

2. lim
x→a

f(x) = −∞ if for every M > 0, there exists δ > 0 such that

0 < |x− a| < δ =⇒ f(x) < −M.

3. lim
x→+∞

f(x) =∞ if for every M > 0, there exists α > 0 such that

x > α =⇒ f(x) > M.

4. lim
x→+∞

f(x) = −∞ if for every M > 0, there exists α > 0 such that

x > α =⇒ f(x) < −M.

5. lim
x→−∞

f(x) =∞ if for every M > 0, there exists α > 0 such that

x < −α =⇒ f(x) > M.
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6. lim
x→−∞

f(x) = −∞ if for every M > 0, there exists α > 0 such that

x < −α =⇒ f(x) < −M.

�

It can be easily shown (Verify) that

lim
x→a

f(x) =∞ ⇐⇒ lim
x→a

[−f(x)] = −∞,

lim
x→+∞

f(x) =∞ ⇐⇒ lim
x→+∞

[−f(x)] = −∞,

lim
x→−∞

f(x) =∞ ⇐⇒ lim
x→−∞

[−f(x)] = −∞.

Example 2.12 (i) We show that lim
x→0

1

x2
=∞.

Taking f(x) =
1

x2
for x 6= 0 and M > 0, we observe that

f(x) > M ⇐⇒ 1

x2
> M ⇐⇒ |x| < 1√

M
.

Hence, for 0 < δ < 1/
√
M ,

|x| < δ =⇒ |x| < 1√
M

=⇒ f(x) > M.

Thus, lim
x→0

1

x2
=∞.

(ii) We show that lim
x→1

∣∣∣1 + x

1− x

∣∣∣ =∞.

Let f(x) =
∣∣∣1 + x

1− x

∣∣∣ for x 6= 1. Then for M > 0,

f(x) =
∣∣∣1 + x

1− x

∣∣∣ > M ⇐⇒ |1− x| < |1 + x|
M

and
|1 + x| = |2− (1− x)| ≥ 2− |1− x| > 1 whenever |x− 1| < 1.

Hence

|x− 1| < 1 and |x− 1| < 1

M
=⇒ |1− x| < |1 + x|

M
=⇒ f(x) > M

Thus,
|x− 1| < δ := min{1, 1/M} =⇒ f(x) > M

showing that lim
x→1

∣∣∣1 + x

1− x

∣∣∣ =∞.
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(iii) Let f(x) = x2, x ∈ R. We show that lim
x→∞

f(x) =∞ and lim
x→−∞

f(x) =∞.

For M > 0,
f(x) = x2 > M ⇐⇒ |x| >

√
M.

Thus,
x >
√
M =⇒ f(x) > M

and
x < −

√
M =⇒ f(x) > M.

�

Example 2.13 Recall that lim
n→∞

(
1 +

1

n

)n
exists, and we denoted it by e. Now we

show that

lim
x→∞

(
1 +

1

x

)x
= e.

So, let ε > 0 be given. We have to find an M > 0 ∈ N such that

e− ε <
(

1 +
1

x

)x
< e+ ε whenever x > M. (∗)

Now, we can see that, for every n ∈ N, if x ∈ R is such that n ≤ x ≤ n+ 1, then

1 +
1

n+ 1
≤ 1 +

1

x
≤ 1 +

1

n

so that (
1 +

1

n+ 1

)n
≤
(

1 +
1

x

)x
≤
(

1 +
1

n

)n+1
.

Thus is is same as

αn ≤
(

1 +
1

x

)x
≤ βn,

where

αn :=
(

1 +
1

n+ 1

)−1(
1 +

1

n+ 1

)n+1
, βn :=

(
1 +

1

n

)n(
1 +

1

n

)
.

We know that αn → e and βn → e as n → ∞. Therefore, there exists n0 ∈ N such
that

e− ε < αn < e+ ε, e− ε < βn < e+ ε

for all n ≥ n0. Now, for x > n0, let n ≥ n0 be such that n ≤ x ≤ n + 1. Then we
have

e− ε < αn ≤
(

1 +
1

x

)x
≤ βn < e+ ε.

Thus, we obtained an M := n0 > 0 such that

e− ε <
(

1 +
1

x

)x
< e+ ε whenever x > M.

Thus, we have proved (∗). �
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Exercise 2.8 Suppose (αn) and (βn) are sequences of positive real numbers and
f is a (real valued) function defined on (0,∞) having the following property: For
n ∈ N, x ∈ R,

n < x < n+ 1 =⇒ αn ≤ f(x) ≤ βn.

If (αn) and (βn) converge to the same limit, say b, then lim
x→∞

f(x) = b. (Hint: Use

the arguments used in the Example 2.13.) J

2.2 Continuity of a Function

In this section we assume that the domain of a real valued function is an interval I.
Recall that every point in an interval I is a limit point of I.

2.2.1 Definition and some basic results

Definition 2.9 Let f be a real valued function defined on an interval I. Then f
is is said to be continuous a point x0 ∈ I if for every ε > 0, there exists a δ > 0
such that

|f(x)− f(x0)| < ε whenever x ∈ I, |x− x0| < δ.

The function f is said to be continuous on I if it is continuous at every x0 ∈ I. �

Note that if I is an interval and x0 ∈ I, then x0 is a limit point of I. Hence, by
Theorems 2.3 and 2.4, we can characterize continuity via limits and sequences, as
given in the following theorem. Details of its proof is left as an exercise.

Theorem 2.12 For a function f : I → R and x0 ∈ I, the following are equivalent.

(i) f is continuous at x0.

(ii) lim
x→x0

f(x) exists and it is equal to f(x0).

(iii) For every sequence (xn) in I with xn → x0, we have f(xn)→ f(x0).

CONVENTION: Suppose the domain of a function f is not specified explicitly.
Even then we may say that f is continuous at a point x0 ∈ R to mean that f is
defined on an interval containing x0 and f is continuous at x0.

Example 2.14 Continuity of the functions given in the following examples follows
by using the characterization (i) or (ii) in The Theorem 2.12. However, we show
how we can use the ε − δ arguments to obtain the same conclusions. Let I be an
interval.

(i) Every constant function defined on I is continuous: For a give c ∈ R, let
f(x) = c, x ∈ I. We may also observe that for any x0 ∈ I, |f(x) − f(x0)| = 0 so
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that for any ε > 0,

x ∈ I, |x− x0| < δ =⇒ |f(x)− f(x0)| < ε

for any choice of δ > 0.

(ii) Let f(x) = x, x ∈ I. Then, for any x0 ∈ I we have |f(x)− f(x0)| = |x− x0|
so that for any ε > 0,

x ∈ I, |x− x0| < δ := ε =⇒ |f(x)− f(x0)| < ε.

Hence f is continuous on I.

(ii) Let f(x) = x2, x ∈ I.

Then, f is continuous on I: For x0 ∈ I and ε > 0 be given. We have

|f(x)− f(x0)| = |(x+ x0)(x− x0)|
≤ (|x|+ |x0)(x− x0)|
≤ (|x− x0|+ 2|x0|)|x− x0|.

Hence, |f(x)− f(x0)| < ε if (|x− x0|+ 2|x0|)|x− x0| < ε. Hence, we may choosing
δ > 0 such that (δ + 2|x0|)δ < ε, we obtain

x ∈ I, |x− x0| < δ =⇒ |f(x)− f(x0)| < (δ + 2|x0|)δ < ε.

For example, we may take 0 < δ < min{1, ε/(1 + 2|x0|)}.

so that for any ε > 0,

x ∈ I, |x− x0| < δ := ε =⇒ |f(x)− f(x0)| < ε.

Hence f is continuous on I.

�

The following theorem is a consequence of Theorem 2.5 and Theorem 2.12.

Theorem 2.13 Suppose f and g are defined on an interval I and both f and g are
continuous at x0 ∈ I. Then f + g and fg are continuous at x0.

The following Theorem is analogous to Theorem 2.9.

Theorem 2.14 Suppose f : I → R is continuous at a point x0 ∈ I and g : J → R
is continuous at the point y0 := f(x0), where J is an interval such that f(I) ⊆ J .
Then g ◦ f : I → R is continuous at x0.

Proof. Let (xn) be any sequence in I such that xn → x0. Since f is continuous
at x0, we have f(xn) → f(x0). Let yn = f(xn), n ∈ N. Since f is continuous at
y0 := f(x0), g(yn)→ g(y0). Thus, we have proved that for every sequence (xn) in I
with xn → x0, (g ◦ f)(xn)→ (g ◦ f)(x0). Hence, g ◦ f is continuous at x0.
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The following characterization of continuity at a point is worth noticing.

Theorem 2.15 A function f : I → R is continuous at a point x0 ∈ I if and
only if for every open interval J containing f(x0), there exists an open interval I0
containing x0 such that

x ∈ I0 ∩ I =⇒ f(x) ∈ J.

Proof. Suppose f is continuous at x0 and J := (α, β) such that f(x0) ∈ J . For
ε > 0, let δ > 0 be such that

x ∈ I, |x− x0| < δ =⇒ |f(x)− f(x0)| < ε,

i.e., taking I0 = (x0 − δ, x0 + δ),

x ∈ I0 ∩ I =⇒ f(x) ∈ (f(x0)− ε, f(x0) + ε).

Choosing ε > 0 such that α < f(x0)− ε and f(x0) + ε) < β, i.e.,

0 < ε < min{β − f(x0), f(x0)− α},

we obtain
x ∈ I0 ∩ I =⇒ f(x) ∈ (α, β).

Conversely, suppose that for every open interval J containing f(x0), there exists
an open interval I0 containing x0 such that x ∈ I0 ∩ I implies f(x) ∈ J . So, given
ε > 0, we may take J = (f(x0) − ε, f(x0) + ε). Let the corresponding I0 be (a, b).
Then with 0 < δ < min{x0 − a, b− x0}, we obtain

x ∈ I, |x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Thus, f is continuous at x0.

Theorem 2.16 Suppose f is a continuous function defined on an interval I and
x0 ∈ I. Suppose f(x0) 6= 0. Then there exists an open interval I0 containing x0
such that f(x) 6= 0 for every x ∈ I0 ∩ I. Further, the function g : I0 ∩ I → R defined
by g(x) = 1/f(x) is continuous at x0.

Proof. Let J = (α, β) be an open interval containing f(x0) such that 0 6∈ J .
Then by Theorem 2.15, there exists an open interval I0 containing x0 such that
f(x) ∈ J whenever x ∈ I0 ∩ I. In particular, f(x) 6= 0 for all x ∈ I0 ∩ I and
g(x) = 1/f(x) is defined on I0 ∩ I.

Next, we observe that for every x ∈ I0 ∩ I,

1

f(x)
− 1

f(x0)
=
f(x0)− f(x)

f(x)f(x0)
.

Since f(x) 6= 0 for all x ∈ I0∩I we have |f(x)| > c := min{|α|, |β|} for all x ∈ I0∩I.
Therefore, ∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ =
|f(x0)− f(x)|
|f(x)f(x0)|

≤ |f(x0)− f(x)|
c2
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for all x ∈ I0 ∩ I. Now, by continuity of f at x0, for every ε > 0, there exists δ > 0
such that

|f(x0)− f(x)| < c2ε whenever x ∈ I0 ∩ I, |x− x0| < δ.

Hence, ∣∣∣∣ 1

f(x)
− 1

f(x0)

∣∣∣∣ < ε whenever x ∈ I0 ∩ I, |x− x0| < δ.

Thus, 1/f is continuous at x0.

Theorems 2.13 and 2.15 imply the following theorem.

Theorem 2.17 Suppose f : I → R and g : I → R are continuous at a point x0 ∈ I
and g(x0) 6= 0. Then there exists an open interval I0 containing x0 such that f/g is
well defined on I0 ∩ I and f/g is continuous at x0.

Exercise 2.9 Suppose f is a continuous function defined on an interval I and
x0 ∈ I. Prove the following.

1. If α ≥ 0 is such that |f(x0)| > α, then there exists a subinterval I0 of I
containing x0 such that |f(x)| > α for all x ∈ I0.

2. If f(x0) > 0, then then there exists a subinterval I0 of I containing x0 such
that |f(x)| ≥ f(x0)/2 for all x ∈ I0.

3. If f(x0) < 0, then then there exists a subinterval I0 of I containing x0 such
that |f(x)| ≤ f(x0)/2 for all x ∈ I0.

J

2.2.2 Some more examples

In the following examples a particular procedure is adopted to show continuity or
discontinuity of a function. The reader may adopt any other alternate procedure,
for instance, any one of the characterizations in Theorem 2.12.

Example 2.15 For real numbers a0, a1, . . . , ak, let f(x) = a0 + a1x+ . . .+ akx
k for

x ∈ R. Since containt functions and the function f0(x) = x, x ∈ R are continuous,
by Theorem 2.13, f is continuous on any interval I. �

Example 2.16 For given x0 ∈ R, let f(x) = |x− x0|, x ∈ R. Then f is continuous
on R. To see this, note that, for a ∈ R,

|f(x)− f(a)| = ||x− x0| − |a− x0|| ≤ |(x− x0)− (a− x0)| = |x− a|.

Hence, for every ε > 0, we have

|x− a| < ε =⇒ |f(x)− f(a)| < ε.

�
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Example 2.17 Let f(x) = x2−4
x−2 for x ∈ R\{2} and f(2) = 4. Then f is continuous

on R (Verify). �

Example 2.18 The functions f, g, h defined by

f(x) = sinx, g(x) = cosx, h(x) =

{
sinx
x , x 6= 0,

1, x = 0

are continuous on R:

Note that for x, y ∈ R,

sinx− sin y = 2 sin
(x− y

2

)
cos
(x+ y

2

)
so that

| sinx− sin y| ≤ |x− y| ∀x, y ∈ R.

Hence, for every ε > 0 and for every x0 ∈ R,

x ∈ R, |x− x0| < ε =⇒ | sinx− sinx0| < ε.

Thus, f is continuous at every point in R. Since cosx = 1 − 2 sin2(x/2), x ∈ R, it
also follows that g is also at every point in R. To see the continuity of h on R, first
we recall that

lim
x→0

sinx

x
= 1.

Hence, h is continuous at 0. Now, let x0 6= 0. Then the continuity of h at x0 follows
from Theorem 2.17, since h = f/f0 where f0(x) = x, x ∈ R.

Continuity of h at a non-zero x0 is seen directly as follows: Note that, for
x 6= 0, x0 6= 0,

sinx

x
− sinx0

x0
=

x0 sinx− x sinx0
xx0

=
(x0 − x) sinx+ x(sinx− sinx0)

xx0
.

Hence, using the fact that | sinx| ≤ |x| and | sinx− sinx0| ≤ |x− x0|, we have∣∣∣∣sinxx − sinx0
x0

∣∣∣∣ ≤ |x0 − x|| sinx|+ |x| | sinx− sinx0|
|xx0|

≤ |x0 − x||x|+ |x| |x− x0|
|xx0|

=
2|x0 − x|
|x0|

.

Thus for a given ε > 0,∣∣∣∣sinxx − sinx0
x0

∣∣∣∣ < ε whenever |x− x0| < ε|x0|/2.

�
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Example 2.19 By Theorem 2.16, the function f defined by f(x) = 1/x, x 6= 0 is
continuous at every x0 6= 0. Recall that the above function f does not have a limit
at x0 = 0. Hence, the function g : R→ R defined by

g(x) =

{
1
x , x 6= 0,
c, x = 0

is not continuous at x0 = 0 for any given c ∈ R. �

Example 2.20 Let f be defined by f(x) = 1/x on (0, 1]. Then there does not exist
a continuous function g on [0, 1] such that g(x) = f(x) for all x ∈ (0, 1]:

Suppose g is any function defined on [0, 1] such that g(x) = f(x) for all x ∈ (0, 1].
Then we have 1/n→ 0 but g(1/n) = f(1/n) = n→∞. Thus, g(1/n) 6→ g(0). �

Exercise 2.10 Show by ε − δ arguments that f defined by f(x) = 1/x, x 6= 0 is
continuous at every x0 6= 0. J

Example 2.21 The function f defined by f(x) =
√
x, x ≥ 0 is continuous at every

x0 ≥ 0:

Let ε > 0 be given. First consider the point x0 = 0. Then we have

|f(x)− f(x0)| =
√
x < ε whenever |x| < ε2.

Thus, f is continuous at x0 = 0. Next assume that x0 > 0. Since |x − x0| =
(
√
x+
√
x0)|
√
x−√x0|, we have

|
√
x−
√
x0| =

|x− x0|√
x+
√
x0
≤ |x− x0|√

x0
.

Thus,
|
√
x−
√
x0| < ε whenever |x− x0| < δ := ε

√
x0.

�

More generally, we have the following example.

Example 2.22 Let k ∈ N. Then the function f defined by f(x) = x1/k, x ≥ 0 is
continuous at every x0 ≥ 0:

Let ε > 0 be given. First consider the point x0 = 0. Then we have

|f(x)− f(x0)| = x1/k < ε whenever |x| < εk.

Thus, f is continuous at x0 = 0. Next assume that x0 > 0. Let y = x1/k and

y0 = x
1/k
0 . Since

yk − yk0 = (y − y0)(yk−1 + yk−2y0 + . . .+ yyk−2 + yk−10 ),

so that

x− x0 = (x1/k − x1/k0 )(yk−1 + yk−2y0 + . . .+ yyk−2 + yk−10 ).
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Hence,

|x1/k − x1/k0 | =
|x− x0|

yk−1 + yk−2y0 + . . .+ yyk−2 + yk−10

≤ |x− x0|
yk−10

.

Thus,

|x1/k − x1/k0 | < ε whenever |x− x0| < δ := εyk−10 = εx
1−1/k
0 .

Thus, f is continuous at every x0 > 0. �

Example 2.23 For a rational number r, let f(x) = xr for x > 0. Then using
Example 2.22 together with Theorem 2.14, we see that f is continuous at every
x0 > 0. �

We know that given r ∈ R, there exists a sequence (rn) of rational numbers such
that rn → r. For n ∈ N, let fn(x) = xrn , x > 0. Since each fn is continuous for
x > 0, one may enquire whether the function f defined by f(x) = xr is continuous
for x > 0.

First of all how do we define the xr for x > 0?

We shall discuss this issue in a latter section, where we shall introduce two
important classes of functions, namely, exponential and logarithm functions. In fact,
our discussion will also include, as special cases, the Examples 2.21 - 2.23.

Exercise 2.11 Let I be an interval and f : I → R. Suppose there exists a constant
K > 0 such that

|f(x)− f(y)| ≤ K|x− y| ∀x, y ∈ I. (∗)

Show that f is continuous on I. Find an example of a continuous function which
does not satisfy (∗) for any K > 0. [Hint: Consider f(x) = 1

x for x ∈ (0, 1].]

A function f satisfying (∗) for some K > 0 is called a Lipschitz continuous
function, and the constant K called the Lipschitz constant. J

2.2.3 Some properties of continuous functions

Recall that a subset S of R is said to be bounded if there exists M > 0 such that
|s| ≤M for all s ∈ S, and set which is not bounded is called an unbounded set.

Recall that if S is a bounded subset of R, then S has infimum and supremum.

Exercise 2.12 Let S ⊆ R. Prove the following:

(i) Suppose S is bounded, and say α := inf S and β := supS. Then there exist
sequences (sn) and (tn) in S such that sn → α and tn → β.

(ii) S is unbounded if and only if there exists a sequence (sn) in S which is
unbounded.
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(iii) S is unbounded if and only if there exists a sequence (sn) in S such that
|sn| → ∞ as n→∞.

(iv) If (sn) is a sequence in S which is unbounded, then there exists a subsequence
(skn) of (sn) such that |skn | → ∞ as n→∞.

(v) If (sn) is a sequence in S such that |sn| → ∞ as n → ∞, and if (skn) is
subsequence of (sn), then |skn | → ∞ as n→∞. J

Definition 2.10 A real valued function defined on a set D ⊆ R is said to be a
bounded function if the set {f(x) : x ∈ D} is bounded. A function is said to be
an unbounded function if it is not bounded. �

The following can be easily deduced from the definition:

• A function f : D → R is bounded if and only if there exists M > 0 such that
|f(x)| ≤M for all x ∈ D.

• A function f : D → R is unbounded if and only if there exists a sequence
(xn) ∈ D such that the |f(xn)| → ∞ as n→∞.

Theorem 2.18 Suppose f is a real valued continuous function defined on a closed
and bounded interval [a, b]. Then f is a bounded function.

Proof. Assume for the time being that f is not a bounded function. Then,
there exists a sequence (xn) in [a, b] such that |f(xn)| → ∞ as n → ∞. Since
(xn) is a bounded sequence, by Bolzano-Weierstrass property of R, there exists a
subsequence (xkn) of (xn) such that xkn → x for some x ∈ [a, b]. Therefore, by
continuity of f , f(xkn)→ f(x). In particular, (f(xkn)) is a bounded sequence. This
is a contradiction to the fact that |f(xn)| → ∞ as n → ∞. Thus, we have proved
that f cannot be unbounded.

Remark 2.3 The conditions in Theorem 2.18 are only sufficient condtions; they
are not necessary conditions. To see this consider the function

f(x) =

{
1, 1 < x ≤ 1,
2, 1 < x <∞.

Then f defined on I = (1,∞) is not continuous and I is neither closed nor bounded,
but f is a bounded function.

It is also true that, if we drop any of the conditions in the theorem, then the
conclusion need not be true. To see this consider the unbounded fuctions in the
following examples:

1. Let f(x) =

{
1
x , x ∈ (0, 1],
1, x = 0.

In this case f is not continuous, though it is

defined on a closed and bounded interval [0, 1].
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2. Let f(x) =
1

x
, x ∈ (0, 1]. In this case f is is continuous, but its domain (0, 1]

is not a closed set.

3. Let f(x) = x, x ∈ [0,∞). In this case f is is continuous, but its domain [0,∞)
is not bounded.

�

Attaining max f and min f

Suppose f is a continuous real valued function defined on a closed and bounded
interval [a, b]. Then, by Theorem 2.18, f is a bounded function. Therefore,

inf
a≤x≤b

f(x) := inf{f(x) : x ∈ [a, b]}

and
sup
a≤x≤b

f(x) := sup{f(x) : x ∈ [a, b]}

exist.

Theorem 2.19 Suppose f is a continuous function defined on a closed and bounded
interval [a, b]. Then there exists x0, y0 in [a, b] such that

f(x0) = inf
a≤x≤b

f(x) and f(y0) = sup
a≤x≤b

f(x).

Proof. By the definition of the infimum of a set, there exists a sequence (xn) in
[a, b] such that f(xn) → α := inf

a≤x≤b
f(x). Since (xn) is a bounded sequence, there

exist a subsequence (xkn) such that xkn → x for some x ∈ [a, b]. By continuity of f ,
f(xkn)→ f(x). But, we already have f(xkn)→ α. Hence, α = f(x) and β = f(y).

Similarly, using the definition of supremum, it can be shown that there exists
y0 ∈ [a, b] such that f(y0) = supa≤x≤b f(x).

The proof of the following corollary is a consequence of Theorem 2.19.

Corollary 2.20 Suppose f is a continuous function defined on a closed and bounded
interval I. Then range of f is a bounded set.

Remark 2.4 By Theorem 2.19, we say that the infimum and supremum of a con-
tinuous real valued function f defined on a closed and bounded interval [a, b] are
attained at some points in [a, b], and in that case, we write

inf{f(x) : x ∈ [a, b]} = min
a≤x≤b

f(x), sup{f(x) : x ∈ [a, b]} = max
a≤x≤b

f(x).

The conclusion in the above theorem need not hold if the domain of the function is
not of the form [a, b] or if f is not continuous. For example, f : (0, 1] → R defined
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by f(x) = 1/x for x ∈ (0, 1] is continuous, but does not attain supremum. Same is
the case if g : [0, 1]→ R is defined by

g(x) =

{
1
x , x ∈ (0, 1],
1, x = 0.

Thus, neither continuity nor the fact that the domain is a closed and bounded
interval can be dropped. This does not mean that the conclusion in the theorem
does not hold for all such functions! For example f : [0, 1)→ R defined by

f(x) =

{
0, x ∈ [0, 1/2),
1, x ∈ [1/2, 1).

Then we see that neither f is continuous, nor its domain of the form [a, b]. But, f
attains both its maximum and minimum. �

Intermediate value theorem

Suppose f is a continuous real valued function defined on a closed and bounded
interval [a, b], and

α := min
a≤x≤b

f(x), β := max
a≤x≤b

f(x).

Clearly,
α ≤ f(x) ≤ β ∀x ∈ [a, b].

Now, the question is whether every value between α and β is attained by the func-
tion. The answer is in affirmative. In fact we have the following general theorem,
known as Intermediate value theorem.

Theorem 2.21 (Intermediate value theorem (IVT)) Suppose f is a continuous
function defined on an interval I. Suppose x1 and x2 are in I such that f(x1) <
f(x2), and c is such that f(x1) < c < f(x2). Then there exists x0 lying between x1
and x2 such that f(x0) = c.

Before giving its proof, let us look at the interpretations of the theorem geomet-
rically and algebraically.

Geometrically:

Consider a curves C1 and C2 with equations

y = f(x) and y = c,

respectively, where a ≤ x ≤ b and f is a continuous funciton on [a, b].
If c lies between the values f(a) and f(b), then the curves C1 and C2

intersect.

Algebraically:
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If f is a continuous function on [a, b] and c lies between f(a) and f(b),
then the equation

f(x) = c

has atleast one solution in [a, b].

Proof of Theorem 2.21. Without loss of generality assume that x1 < x2. Let

S = {x ∈ [x1, x2] : f(x) < c}.

Then S is non-empty (since x1 ∈ S) and bounded above (since x ≤ x2 for all x ∈ S).
Let

α := supS.

Then there exists a sequence (an) in S such that an → α. Note that α ∈ [x1, x2].
Hence, by continuity of f , f(an) → f(α). Since f(an) < c for all n ∈ N, we have
f(α) ≤ c. Note that α 6= x2, since f(α) ≤ c < f(x2).

Now, let (bn) be a sequence in (α, x2) such that bn → α. Then, again by
continuity of f , f(bn)→ f(α). Since bn > α, bn 6∈ S and hence f(bn) ≥ c. Therefore,
f(α) ≥ c. Thus, we have prove that there exists x0 := α such that f(x0) ≤ c ≤ f(x0)
so that f(x0) = c.

Remark 2.5 The proof given above for Theorem 2.21 is taken from the book by
Ghorpade and Limaye [3]. �

The following two corollaries are immediate consequences of the above theorem.

Corollary 2.22 Let f be a continuous function defined on an interval. Then range
of f is an interval.

Corollary 2.23 Suppose f is a continuous real valued function defined on an inter-
val I. If a, b ∈ I are such that f(a) and f(b) have opposite signs, then there exists
x0 ∈ I such that f(x0) = 0.

Now, we derive another important property of continuous functions.

Theorem 2.24 Suppose f is a continuous function defined on a closed and bounded
interval I. Then its range is a closed and bounded interval.

Proof. We know, by Corollaries 2.20 and 2.22, that range of f is a bounded
interval, say J . Hence, it is enough to show that J is a closed set, i.e., J contains all
its limit points. For this, let y0 be a limit point of J . Hence, there exists a sequence
(yn) in J which converges to y0. let xn ∈ I be such that f(xn) = yn, n ∈ N. Since I
is closed and bounded, (xn) has a subsequence (xkn) which converges to some point
x0 ∈ I. By continuity of f , ykn = f(xkn)→ f(x0). Thus, we obtain y0 = f(x0) ∈ J .
This completes the proof.



Continuity of a Function 69

2.2.4 Continuity of the inverse of a function

Suppose f is defined on a set D ⊆ R. We may recall the following from elementary
set theory:

If f is injective, i.e., one-one, then we know that a function g can be defined on
the range E := f(D) of f by g(y) = x for y ∈ E, where x ∈ D is the unique element
in x such that f(x) = y. The above function g is called the inverse of f . Note that
the domain of the inverse of f is the range of f .

By Corollary 2.22, we know that range of a continuous function defined on an
interval I is also an interval. Suppose f is also injective. The a natural question
one would like to ask is whether its inverse is also continuous. First we answer this
question affirmatively by assuming that the domain of the function is closed and
bounded.

Theorem 2.25 (Inverse Function Theorem) Let f be a continuous injective
function defined on a closed and bounded interval I. Then its inverse from its range
is continuous.

Proof. Suppose J = f(I), the range of f . Let y0 ∈ J and (yn) be a sequence in
J which converges to y0. Let xn = f−1(yn), n ∈ N and x0 = f−1(y0). We have to
show that xn → x0.

Suppose, on the contrary, xn 6→ x0. Then there exists ε0 > 0 and a subsequence
(un) of (xn) such that un 6∈ (x0 − ε0, x0 + ε0) for all n ∈ N. Since I is a bounded
interval, (un) is a bounded sequence. Hence, (un) has a subsequence (vn) which
converges to some v ∈ R. Since I is a closed interval, v ∈ I. Now, continuity of f
implies that f(vn) → f(v). But, since (f(vn)) is a subsequence of (yn), and since
yn → y0, we have f(v) = y0 = f(x0). Now, since f is injective, v = x0. Thus we have
proved that vn → x0. This is a contradiction to the fact that vn 6∈ (x0− ε0, x0 + ε0)
for all n ∈ N.

Next we shall prove the conclusion in the last theorem by dropping the condition
that I is closed and bounded, but assuming an additional condition on f , namely
that it is strictly monotonic.

So, we have to define what strict monotonicity of f is.

Definition 2.11 Let f be defined on an interval I. Then f is said to be

(i) monotonically increasing on I if

x, y ∈ I, x < y =⇒ f(x) ≤ f(y),

(ii) strictly monotonically increasing on I if

x, y ∈ I, x < y =⇒ f(x) < f(y),
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(iii) monotonically decreasing on I if

x, y ∈ I, x < y =⇒ f(x) ≥ f(y).

(iv) strictly monotonically decreasing on I if

x, y ∈ I, x < y =⇒ f(x) > f(y).

If f is either monotonically increasing (respectively, strictly monotonically increas-
ing) or monotonically decreasing (respectively, strictly monotonically decreasing) on
I, then it is called a monotonic (respectively, strictly monotonic) function. �

We observe that

• f strictly monotonic on I =⇒ f is injective on I.

The converse of the above statement is true. For example, the function

f(x) =

{
x, −1 ≤ x ≤ 0,
1− x, 0 < x ≤ 1,

is injective but not strictly monotonic on [−1, 1].

Sometimes, the terminology increasing , decreasing, strictly increasing, strictly
decreasing, are used in place of monotonically increasing, monotonically decreas-
ing, strictly monotonically increasing, and strictly monotonically decreasing, re-
spectively.

Example 2.24 We observe the following.

(i) The function f(x) = x is strictly increasing on R.

(ii) The function f(x) = −x is strictly increasing on R.

(iii) The function f(x) = x2 is strictly increasing for x ≥ 0 and strictly decreasing
for x ≤ 0.

(iv) The function f(x) = x3 is strictly increasing on R.

(vi) The function f(x) = sinx is strictly increasing on [0, π/2] and strictly
decreasing on [π/2, π].

(vi) The function f(x) = cosx is strictly decreasing on [0, π]. �

Theorem 2.26 (Inverse Function Theorem) Let f be a continuous function
defined on an interval I. Suppose f is strictly monotonic on I. Then f is injective
and its inverse from its range is continuous.

Proof. We assume that f is strictly monotonically increasing. The case when
strictly monotonically increasing will follows by similar arguments.
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Since f is continuous, its range is also an interval, say J . By the assumption,
for x1, x2 ∈ J , x1 < x2 =⇒ f(x1) < f(x2). Hence, f is injective. Let g be its
inverse from the range J . Let y0 ∈ J and (yn) in J be such that yn → y0. Let
xn = g(yn), n ∈ N and x0 = g(y0). We have to show that xn → x0. Suppose
xn 6→ x0. Then there exists ε > 0 and a subsequence (xkn) of (xn) such that
|xkn − x0| ≥ ε, i.e.,

xkn 6∈ (x0 − ε, x0 + ε) ∀n ∈ N.

Note that, at the moment, we cannot write f(xkn) 6∈ (f(x0 − ε), f(x0 + ε)) for all
n ∈ N so as to conclude that ykn 6→ 0 and thus arrive at a contradiction, because
we do not know that x0 − ε and x0 + ε belong to the domain of f . So, we consider
the following three mutually exclusive cases:

(i) xkn ≤ x0 − ε ∀n ∈ N,

(ii) xkn ≥ x0 + ε ∀n ∈ N,

(iii) ∃n,m ∈ N such that xkn ≤ x0 − ε and xkm ≥ x0 + ε.

Since x0 ∈ I and xkn ∈ I for all n ∈ N, in case (i), [x0 − ε, x0] ⊆ I, in case (ii),
[x0, x0 + ε] ⊆ I, and in case (iii), [x0 − ε, x0 + ε] ⊆ I. Thus, by strict monotonicity
of f , we have

(a) x0 − ε ∈ I and ykn ≤ f(x0 − ε) < y0 ∀n ∈ N,

(b) x0 + ε ∈ I and y0 < f(x0 + ε) ≤ ykn ∀n ∈ N,

(c) x0 − ε, x0 + ε ∈ I and ykn 6∈ (f(x0 − ε), f(x0 + ε)) ∀n ∈ N

in cases (i), (ii), (iii), respectively. Hence, we can conclude that ykn 6→ y0, which is
a contradiction. Thus, we have proved that g is continuous.

Remark 2.6 (i) In the proof of Theorem 2.26, the continuity of f is used only to
assert that its range J is an interval so that its inverse f−1 is defined on an interval.

(ii) We know that strict monotonicity of a function implies that it is injective,
but injectivity does not implies strict monotonicity. So, one may ask whether strict
monotonicity assumption in Theorem 2.26 can be replaced by injectivity. The answer
is in affirmative as the following Exercise shows. �

Exercise 2.13 Let f be an injective function defined on an interval I. Show that
if f is continuous, then it is strictly monotonic on I [Hint: Use Intermediate Value
Theorem]. J
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2.2.5 Exponential and logarithm functions

We have already come across expression such as ab for a > 0 and b ∈ R, though we
have not proved its existence. Also we have seen that

(i) lim
n→∞

(
1 +

1

n

)1/n

exists,

(ii)
∞∑
n=0

1

n!
converges,

and they are same, and denoted the common value by e (after Euler). We have also
shown that

e = lim
x→∞

(
1 +

1

x

)1/x

.

From elementary arithmetic we know that for m,n ∈ N, em+n = emen, and en is
defined by e−n = 1

en . Thus, using the convention e0 = 1, we have

em+n = emen ∀m,n ∈ Z.

For n ∈ N, we may define e1/n as the nth root of e. Once this is done we can define
er for any rational number r. But, proof of the existence of the nth root of a positive
number is quite involved. We shall consider an alternate method for proving the
same thing, by using the concept of an exponential function exp(x), x ∈ R. First,
we observe that the series

∞∑
n=0

xn

n!

converges absolutely for every x ∈ R. This is easily seen by using the ratio test.
This series plays a very significant role in mathematics.

Definition 2.12 For x ∈ R, the function

exp(x) :=

∞∑
n=0

xn

n!
, x ∈ R,

is called the exponential function. �

Clearly,
exp(0) = 1, exp(1) = e.

Our first attempt is to show that

exp(r) = er

for every rational number. In order to do that we have to derive some of the
important properties of the function exp(x). For that purpose, first we observe the
following result on convergence of series.
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Theorem 2.27 Suppose that
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergent se-
ries, and

cn =
n∑
k=0

akbn−k, n ∈ N.

Then, the series
∑∞

n=0 cn converges absolutely and

( ∞∑
n=0

an

)( ∞∑
n=0

bn

)
=
∞∑
n=0

cn.

Proof. Since
∑∞

n=0 an and
∑∞

n=0 bn are absolutely convergence, they are conver-
gent. Let their sums be A and B, respectively. Let

An =
n∑
i=0

ai, Bn =
n∑
i=0

bi, Cn =
n∑
i=0

ci.

Then An → A, Bn → B and AnBn → AB. We have to prove that Cn → AB.

First let us assume that the terms of the series are with positive terms. Note
that, if

αij = aibj , i, j = 0, 1, . . . , n,

then AnBn is the sum of all entries of the matrix (αij) and Cn is the sum of the
entries of the left upper triangular part of the matrix (αij), i.e.,

AnBn =
n∑
i=0

n∑
j=0

αij , Cn =
n∑
i=0

n−i∑
j=0

αij .

Hence, it follows that
Cn ≤ AnBn ≤ C2n (1)

for all n ∈ N. Since (AnBn) converges to AB and (Cn) is an increasing sequence
of nonnegative terms, the relation (1) implies that (Cn) is bounded, and hence it
converges. Let Cn → C. Again, (1) together with sandwich theorem implies that
Cn → AB. This proves the case when the series are with nonnegative terms.

Next let us consider the general case. By what we have proved in last paragraph,
we have ( ∞∑

i=0

|ai|
)( ∞∑

i=0

|bi|
)

=

∞∑
k=0

( k∑
i=0

|ai| |bk−i|
)
.

Let

Ân =

n∑
i=0

|ai|, B̂n =

n∑
i=0

|bi|, Dn =

n∑
k=0

( k∑
i=0

|ai| |bk−i|
)
.

As in last paragraph, we obtain

Dn ≤ ÂnB̂n ≤ D2n
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so that

|AnBn − Cn| ≤ ÂnB̂n −Dn ≤ D2n −Dn. (2)

Since (Dn) converges, we obtain D2n − Dn → 0, and since AnBn → AB, we have
the convergence Cn → AB.

Definition 2.13 The series
∑∞

n=0 cn with cn =
∑n

k=0 akbn−k is called the Cauchy
product of

∑∞
n=0 an and

∑∞
n=0 bn. �

Now, we observe some properties of exp(·).

Theorem 2.28 Let exp(·) be the function as in Definition 2.12. Then the following
results hold.

(i) exp(x+ y) = exp(x) exp(y) ∀x, y ∈ R

(ii) exp(x) 6= 0 ∀x ∈ R.

(iii) exp(−x) =
1

exp(x)
∀x ∈ R.

(iv) exp(x) > 0 ∀x ∈ R.

(v) exp(kx) = [exp(x)]k ∀x ∈ R, k ∈ Z. In particular,

(a) exp(k) = ek, ∀ k ∈ Z,
(b) [exp(1/k)]k = e ∀ k ∈ Z.
(c) exp(m/n) = [exp(1/n)]m ∀m,n ∈ Z with n 6= 0.

(vi) exp(x) > 1 ⇐⇒ x > 0 and exp(x) = 1 ⇐⇒ x = 0.

(vii) x > y ⇐⇒ exp(x) > exp(y).

(viii) exp(x)→∞ as x→∞.

(ix) exp(x)→ 0 as x→ −∞.

Proof. Note that, for x, y ∈ R,

(x+ y)n

n!
=

1

n!

n∑
k=0

n!

k!(n− k)!
xkyn−k =

n∑
k=0

xk

k!

yn−k

(n− k)!
.

Hence, by Theorem 2.27 by taking an = xn/n! and bn = yn/n!, we have

∞∑
n=0

(x+ y)n

n!
=
( ∞∑
n=0

xn

n!

)( ∞∑
n=0

yn

n!

)
.



Continuity of a Function 75

This proves (i). The results in (ii) and (iii) follow from (i), and the result in (iv)
follows from (iii), since exp(x) > 0 for x ≥ 0, and (v) follows from (i).

To see (vi), observe that x > 0 implies exp(x) > 1. Next, suppose x ≤ 0. If
x = 0, then exp(x) = exp(0) = 1. If x < 1, then taking y = −x, we have y > 1,
and hence from the first part, exp(y) > 1, i.e., 1/ exp(x) = exp(−x) > 1 so that
exp(x) < 1. Hence, exp(x) > 1 ⇐⇒ x > 0. From the above arguments, we also
obtain exp(x) = 1 ⇐⇒ x = 0.

The result in (vii) follows from the facts that

x > y ⇐⇒ x− y > 0 ⇐⇒ exp(x− y) > 1

and the relation exp(x−y) = exp(x)/ exp(y), which is a consequence of (i) and (iii).

The result in (viii) follows from the relation

exp(x) = 1 + x+
∞∑
n=2

xn

n!
≥ 1 + x ∀x > 0,

and (ix) is a consequence of (iii) and (viii).

In view of (v)(b) above, we may define

e1/k := exp(1/k) ∀ k ∈ N,

and hence by (v)(c),
em/n := [e1/n]m ∀m,n ∈ N.

Thus, for every rational number r, we can define

er := exp(r)

which satisfies the usual index laws.

We know that every real number is a limit of a sequence of rational numbers.
Thus, if x ∈ R, there exists a sequence (xn) of rational numbers that xn → x. So,
we may define

ex = lim
n→∞

exn

provided the above limit exists. Thus, our next attempt is to show that the function
exp(x), x ∈ R, is continuous.

Theorem 2.29 The function exp(·) is continuous on R

Proof. For brevity of expression, let us use the notation ex for exp(x). Let
x, x0 ∈ R. Then we have

ex − ex0 = ex0(ex−x0 − 1) = ex0
∞∑
n=1

(x− x0)n

n!
= ex0(x− x0)

∞∑
n=1

(x− x0)n−1

n!
.
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Thus, if |x− x0| ≤ 1, then

|ex − ex0 | ≤ ex0 |x− x0|
∞∑
n=1

1

n!
= ex0(e− 1)|x− x0|.

Hence, for every ε > 0,

|ex − ex0 | < ε whenever |x− x0| < min{1, ε/[ex0(e− 1)]}

so that ex is a continuous function for x ∈ R.

NOTATION: We know that for every x ∈ R, there exists a sequence (xn) of
rational numbers such that xn → x. In view of Theorem 2.29,

exn = exp(xn)→ exp(x).

Hence, we shall use the notation ex for exp(x) for every x ∈ R. With this notation
we have the following identity:

ex+y = exey ∀x, y ∈ R.

Theorem 2.30 The function ex is bijective from R to (0,∞).

Proof. First we observe that, for x1, x2 in R

ex2 − ex1 = ex1 [ex2−x1 − 1].

Thus,
ex2 = ex1 ⇐⇒ ex2−x1 = 1 ⇐⇒ x1 = x2,

showing that the function x 7→ ex is one-one.

Next, we show that the function is onto, let y ∈ (0,∞). Recall that

ex → 0 as x→ −∞, ex →∞ as x→∞.

Hence, there exists M1 > 0 such that ex > y for all x > M1, and there exists M2 > 0
such that ex < y for all x < −M2. Now, taking x1 > M1 and x2 < −M2, we obtain

ex1 < y < ex2 .

Hence, by the intermediate value property, there exists x ∈ R such that ex = y.

Definition 2.14 For b > 0, the unique a ∈ R such that ea = b is called the natural
logarithm of b, and it is denoted by ln b. The function

lnx, x > 0,

is called the natural logarithm function. �
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Definition 2.15 For a > 0 and b ∈ R, we define

ab := eb ln a.

�

Remark 2.7 We note that ln e = 1 so that if a = e, then the Definition 2.15
matches with Definition 2.12. �

Theorem 2.31 Let a > 0. Then the function ax is continuous and bijective from
R to (0,∞).

Proof. Note that for x ∈ R, ax := ex ln a. Hence, the result is a consequence of
Theorems 2.29 and 2.30, and the Definition 2.15, and using the fact that composition
of two continuous functions is continuous.

Definition 2.16 Let a > 0. For c > 0, the unique b ∈ R such that ab = c is called
the logarithm of c to the base a, and it is denoted by loga c. The function

loga x, x > 0,

is called the logarithm function. �

We observe that following.

• For y ∈ R, y = lnx ⇐⇒ ey = x.

• For a > 0 and y ∈ R, y = loga x ⇐⇒ ay = x.

• For a > 0 and x > 0, loga x =
lnx

ln a
.

Exercise 2.14 For a > 0, b > 0, show that (logb a)(loga b) = 1. J

Theorem 2.32 The functions lnx and loga x for a > 0 are continuous on (0,∞).

Proof. Let x, x0 belong to the interval (0,∞), and let y = lnx and y0 = lnx0.
Then we have ey = x and ey0 = x0. Assume, without loss of generality that x > x0.
Since ea > 1 if and only if a > 0, we have y > y0, and hence

x− x0 = ey − ey0 = ey0(ey−y0 − 1) = ey0
∞∑
n=1

(y − y0)n

n!
≥ ey0(y − y0).

Hence,

|y − y0| ≤ e−y0 |x− x0|.

Thus, for ε > 0, we have |y− y0| < ε whenever |x−x0| < ey0ε, lnx is continuous on
(0,∞). Since loga x = lnx/ ln a, the function loga x is also continuous on (0,∞).
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Theorem 2.33 For r ∈ R, the function f : (0,∞)→ R be defined by

f(x) = xr, x ∈ (0,∞)

is continuous.

Proof. For r ∈ R and x > 0, we have xr = er lnx. Hence, the result follows from
Theorem 2.32 and Theorem 2.14.

NOTATION: Often, the notation log x is used for the natural logarithm function
in place lnx.

2.3 Differentiability of functions

2.3.1 Definition and examples

Definition 2.17 Suppose f is a (real valued) function defined on an open interval
I and x0 ∈ I. Then f is said to be differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0

exists, and in that case the value of the limit is called the derivative of f at x0.

The derivative of f at x0, if exists, is denoted by

f ′(x0) or
df

dx
(x0)

or sometimes
d

dx
f(x)|x=x0 .

�

Remark 2.8 The notation
df

dx
(x), introduced by Leibniz1, is useful in realizing that

the expression
d

dx
is an operator which associates each function f differentiable in

an open interval I to the function f ′(x). �

Let f be a real valued function defined on an open interval I containing x0. We
observe the following.

1Gottfried Wilhelm von Leibniz (July 1, 1646 November 14, 1716) was a German Mathematician
and Philosopher, who was the one of the two founders of Calculus, the other was Isaac Newton (25
December 1642 20 March 1727), the English Physicist and Mathematician.
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1. f : I → R is differentiable at x0 ∈ I if and only if lim
h→0

f(x0 + h)− f(x0)

h
exists, and in that case

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

2. f : I → R is differentiable at x0 ∈ I if and only if for every sequence (xn) in

I \ {x0}, xn → x0 implies lim
h→0

f(xn)− f(x0)

xn − x0
exists, and in that case

f ′(x0) = lim
h→0

f(xn)− f(x0)

xn − x0
.

CONVENTION: Whenever we say that “a function f is differentiable at a point
x0”, we mean that f is a real valued function defined on an open interval I containing
x0 and f : I → R is differentiable at x0.

Example 2.25 Let us look at the following simple examples.

(i) For c ∈ R, let f(x) = c, x ∈ R. Then it is clear that for any x0 ∈ R,

f(x)− f(x0)

x− x0
= 0 ∀x 6= x0.

Hence f ′(x0) = 0.

(ii) Let f(x) = x, x ∈ R. Then for any x0 ∈ R,

f(x)− f(x0)

x− x0
= 1 ∀x 6= x0.

Hence f ′(x0) = 1.

(iii) Let f(x) = sinx, x ∈ R. Then for any x, x0 ∈ R with x 6= x0,

f(x)− f(x0)

x− x0
=

2 cos
(
x+x0

2

)
sin
(
x−x0

2

)
x− x0

= cos
(x+ x0

2

)sin
(
x−x0

2

)
x−x0

2

.

Thus we see that lim
x→x0

f(x)− f(x0)

x− x0
= cosx0 so that f ′(x0) = cosx0.

(iv) The function ex is differentiable at ever x ∈ R and

(ex)′ = ex ∀x ∈ R.

To see this, first we note that for h 6= 0,

ex+h − ex

h
− ex =

ex

h
(eh − 1− h) =

ex

h

∞∑
n=2

hn

n!
= exh

∞∑
n=2

hn−2

n!
.
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Hence,

|h| ≤ 1 =⇒
∣∣∣∣ex+h − exh

− ex
∣∣∣∣ ≤ ex|h| ∞∑

n=2

1

n!
= ex|h|(e− 2).

From this we obtain that ex is differentiable at x and its derivative is ex. �

Remark 2.9 In deriving the result Example 2.25 (iv), we used the following fact: If
(an) is a sequence such that

∑∞
n=1 an converges absolutely, then

∑∞
n=1 an converges

and ∣∣∣ ∞∑
n=1

an

∣∣∣ ≤ ∞∑
n=1

|an|.

�

Many of the functions that occur in mathematics can be constructed with the
help of the functions considered in the Example 2.25 using some properties of dif-
ferentiation considered in the next section.

Exercise 2.15 Suppose f is defined on an open interval I and x0 ∈ I. Show that
f is differentiable at x0 ∈ I if and only if there exists a continuous function Φ(x)
such that

f(x) = f(x0) + Φ(x)(x− x0),
and in that case Φ(x0) = f ′(x0). J

Exercise 2.16 Let Φ be as in Exercise 2.15. Then f is differentiable at x0, if and
only if for every sequence (xn) in I \{x0} which converges to x0, the sequence Φ(xn)
converges, and in that case f ′(x0) = lim

n→∞
Φ(xn). J

2.3.2 Left and right derivatives

Recall that in the definition of continuity of a function we considered the domain
of the function to be an interval, not necessarily an open interval, whereas in the
definition of differentiability we took the interval to be an open interval. Even in
the definition of differentiability we could have taken an arbitrary interval and x0
can be an end point of I if belongs to that interval. In such case, we have the the so
called right differentiability or left differentiability at x0 depending on whether x0 is
a right end point or left end point of I.

In fact right differentiability and left differentiability can be defined at an interior
point as well. By interior point of an interval I we mean those points in I which
are not the endpoints. More generally, a point a ∈ R is said to be an interior point
of a set D ⊆ R if D contains a δ-neighbourhood of a.

Definition 2.18 Let f be a real valued function defined on an interval I and x0 ∈ I.

1. Let x0 be a right endpoint or an interior point of I. Then f is said to be left
differentiable at x0 if

lim
x→x0−

f(x)− f(x0)

x− x0
exists,
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and in that case the above limit is called the left derivative of f at x0, and
it is denoted f ′−(x0).

2. Let x0 be a left endpoint or an interior point of I. Then f is said to be right
differentiable at x0 if

lim
x→x0+

f(x)− f(x0)

x− x0
exists,

and in that case the above limit is called the right derivative of f at x0, and
it is denoted f ′+(x0).

�

Remark 2.10 In some of the books in calculus, one may find the notations f ′(x0−)
and f ′(x0+) for left derivative and right derivative, respectively, at x0. We preferred
to use the notations f ′−(x0) and f ′+(x0) as the notations f ′(x0−) and f ′(x0+) can
be confused with the left and right limits of the function f ′ at the point x0. Thus,
in our notation,

f ′−(x0) := lim
x→x0−

f(x)− f(x0)

x− x0
, f ′+(x0) := lim

x→x0+

f(x)− f(x0)

x− x0
whenever the above limits exists.

�

The following characterization will help us in checking the existence of left and
right derivatives.

(i) Let x0 be the right endpoint or an interior point of I and δ0 > 0 be such that
(x0 − δ0, x0] ⊆ I. Let

Φ−(x) =
f(x)− f(x0)

x− x0
, x0 − δ0 < x < x0.

Then f ′−(x0) exists if and only if lim
x→x0

Φ−(x) exists, and f ′−(x0) = lim
x→x0

Φ−(x).

(ii) Let x0 be the left endpoint or an interior point of I and δ0 > 0 be such that
[x0, x0 + δ0) ⊆ I. Let

Φ+(x) =
f(x)− f(x0)

x− x0
, x0 < x < x0 + δ0.

Then f ′+(x0) exists if and only if lim
x→x0

Φ+(x) exists, and f ′+(x0) = lim
x→x0

Φ+(x).

The following characterizations are in terms of sequences (Verify):
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(i) Let x0 be a right endpoint or an interior point of I. Then f−(x0) exists if
and only if for every sequence (xn) in I with xn < x0 for all n ∈ N, xn → x0 implies

lim
n→∞

f(xn)− f(x0)

xn − x0
exists,, and in that case

f ′−(x0) = lim
n→∞

f(xn)− f(x0)

xn − x0
.

(ii) Let x0 be a left endpoint or an interior point of I. Then f+(x0) exists if and
only if for every sequence (xn) in I with xn > x0 for all n ∈ N, xn → x0 implies

lim
n→∞

f(xn)− f(x0)

xn − x0
exists, and in that case

f ′+(x0) = lim
n→∞

f(xn)− f(x0)

xn − x0
.

In view of the above discussion, we have the following:

• If x0 is an interior point of I, then f ′(x0) exists if and only if f ′+(x0) and
f ′−(x0) exists and f ′(x0) = f ′+(x0) = f ′−(x0).

Exercise 2.17 Prove the above statement. J

Example 2.26 Let

f(x) =

{
0, x ∈ [−1, 0),
1, x ∈ [0, 1].

Then f is

1. differentiable at every point in x0 ∈ (−1, 0) ∪ (0, 1), and f ′(x0) = 0,

2. right differentiable at −1 and 0, and f ′+(−1) = 0, f ′+(0) = 0,

3. left differentiable at 1, and f ′−(0) = 0.

4. not left differentiable at 0.

In fact, it can be easily seen that

(i) x0 ∈ (−1, 0) ∪ (0, 1) =⇒ lim
x→x0

f(x)− f(x0)

x− x0
= 0,

(ii) x0 = −1 =⇒ lim
x→x0+

f(x)− f(x0)

x− x0
= 0,

(iii) x0 = 0 =⇒ lim
x→x0+

f(x)− f(x0)

x− x0
= 0 and lim

x→x0−

f(x)− f(x0)

x− x0
does not

exist,

(iv) x0 = 1 =⇒ lim
x→x0−

f(x)− f(x0)

x− x0
= 0. �
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Example 2.27 Consider the signum function, f(x) = sgn(x), x ∈ R, that is,
f : R→ R is defined by

f(x) =

{
x/|x| if x 6= 0,
0 if x = 0.

Note that f(x) = 1 for x > 0, f(x) = −1 for x < 0. Hence, we obtain f ′(x) = 0 for
every x 6= 0. Note that

f(x)− f(0)

x
=

{
1/x, x > 0
−1/x, x < 0.

Hence, neither f ′+(0) nor f ′−(0) exists. �

Example 2.28 Let f : R→ R be defined by

f(x) =

{
1− |x| if x ∈ [−1, 1],
0 if x 6∈ [−1, 1].

Then we have f(x) =


1− x if x ∈ [0, 1],
1 + x if x ∈ [−1, 0),
0 if x 6∈ [−1, 1].

Clearly, f is differentiable at every

x0 6∈ {−1, 0, 1}. Let us consider the situations at the points −1, 0, 1.

(i) x < −1 =⇒ f(x)− f(−1)

x− (−1)
=

0− 0

x+ 1
= 0. Hence, f ′−(−1) = 0.

(ii) −1 < x < 0 =⇒ f(x)− f(−1)

x− (−1)
=

(1 + x)− 0

x+ 1
= 1. Hence, f ′+(−1) = 1.

(iii) −1 < x < 0 =⇒ f(x)− f(0)

x
=

(1 + x)− 1

x
= 1. Hence, f−(0) = 1.

(iv) 0 < x < 1 =⇒ f(x)− f(0)

x− (−1)
=

(1− x)− 1

x
= −1. Hence, f ′+(0) = −1.

(v) 0 < x < 1 =⇒ f(x)− f(1)

x− 1
=

(1− x)− 0

x− 1
= −1. Hence, f ′−(1) = −1.

(vi) x > 1 =⇒ f(x)− f(1)

x− 1
=

0− 0

x− 1
= 0. Hence, f ′+(1) = 0.

Thus left and right derivatives of f at the points −1, 0, 1 exist, but f is not differ-
entiable at any of these points. �

2.3.3 Some properties of differentiable functions

The proof of the following theorem is easy and hence it is left as an exercise.

Theorem 2.34 Suppose f and g defined on I are differentiable at a point x0 and
α ∈ R. Then the functions f + g and αf , defined by

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x), x ∈ I,
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are differentiable at x0, and

(f + g)′(x0) = f ′(x0) + g′(x0), (αf)′(x0) = αϕ′(x0).

Here is a necessary condition for differentiability.

Theorem 2.35 (Differentiability implies continuity) Suppose f defined at
point x0. Then f is continuous at x0.

Proof. Note that

f(x)− f(x0) =

[
f(x)− f(x0)

x− x0

]
(x− x0)→ f ′(x0).0 = 0 as x→ x0.

Thus, f is continuous at x0.

For the following theorem, we may recall that if a function g is continuous at
a point x0 and g(x0) 6= 0, then there exists an open interval I0 containing x0 such
that g(x) 6= 0 for all x ∈ I0.

Theorem 2.36 (Products and quotient rules) Suppose f and g are differen-
tiable at x0. Then the function ϕ(x) := f(x)g(x) is differentiable at x0, and

ϕ′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0). (∗)

If g(x) is nonzero in a neighbourhood of x0, then the function ψ(x) := f(x)/g(x)
defined in that neighbourhood is differentiable at x0, and

ψ′(x0) =
g(x0)f

′(x0)− f(x0)g
′(x0)

[g(x0)]2
. (∗∗)

Proof. Note that

ϕ(x)− ϕ(x0) = f(x)g(x)− f(x0)g(x0)

= [f(x)− f(x0)]g(x) + f(x0)[g(x)− g(x)]

so that, using the facts that f ′(x0) and g′(x0) exist and g is continuous at x0, obtain

ϕ(x)− ϕ(x0)

x− x0
=

f(x)− f(x0)

x− x0
g(x) + f(x0)

g(x)− g(x0)

x− x0
→ f ′(x0)g(x0) + f(x0)g

′(x0) as h→ 0.

Hence, ϕ is differentiable at x0, and

ϕ′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0).
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Also, since

ψ(x)− ψ(x0) =
f(x)g(x0)− f(x0)g(x)

g(x)g(x0)

=
[f(x)− f(x0)]g(x0)− f(x0)[g(x)− g(x0)]

g(x)g(x0)
,

we have

ψ(x0 + h)− ψ(x0)

h
=

1

g(x)g(x0)

[
f(x)− f(x0)

x− x0
g(x0)− f(x0)

g(x)− g(x0)

x− x0

]
→ f ′(x0)g(x0)− f(x0)g

′(x0)

[g(x0)]2
as h→ 0.

Thus, ψ is differentiable at x0, and ψ′(x0) =
g(x0)f

′(x0)− f(x0)g
′(x0)

[g(x0)]2
.

Theorem 2.37 (Composition rule) Suppose f is differentiable at x0 and g is
differentiable at y0 := f(x0). Then g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f
′(x0).

Proof. Let (xn) be a sequence in a deleted neighbourhood of x0 which converges

to x0. We have to prove that lim
n→∞

(g ◦ f)(xn)− (g ◦ f)(x0)

xn − x0
exists and the limit is

g′(y0)f
′(x0). For this, let yn := f(xn) for n ∈ N and y0 = f(x0). Let us look at the

formal expression

(g ◦ f)(xn)− (g ◦ f)(x0)

xn − x0
=

g(yn)− g(y0)

xn − x0

=
g(yn)− g(y0)

yn − y0
× f(xn)− f(x0)

xn − x0
.

Since f ′(x0) exists, lim
n→∞

f(xn)− f(x0)

xn − x0
= f ′(x0). However, we will not be able write

lim
n→∞

g(yn)− g(y0)

yn − y0
= g′(x0), because (yn) may not be in a deleted neighbourhood

of y0, although yn → y0, by continuity of f at x0. To take care of this situation, for
each n ∈ N, we define

αn =

{
g(yn)−g(y0)
yn−y0 if yn 6= y0,

g′(y0) if yn = y0.

Note that αn → g′(y0). Hence,

(g ◦ f)(xn)− (g ◦ f)(x0)

xn − x0
= αn ×

f(xn)− f(x0)

xn − x0
→ g′(y0)f

′(x0)

showing that (g ◦ f)′(x0) = g′(y0)f
′(x0).



86 Limit, Continuity and Differentiability of Functions M.T. Nair

In view of the formula in Theorem 2.37, the following result is not surprising.

Theorem 2.38 Suppose g ◦ f is differentiable at x0, g is differentiable at y0 with
g′(y0) 6= 0, and f is continuous at x0. Then f is differentiable at x0 and

f ′(x0) =
(g ◦ f)′(x0)

g′(y0)
.

Proof. Let (xn) be a sequence in a deleted neighbourhood of x0 which converges
to x0, yn := f(xn) for n ∈ N and y0 = f(x0). Let (αn) be as in the proof of Theorem
2.37. Since f is continuous at x0, yn → y0 so that αn → g′(y0) 6= 0 and αn 6= 0 for
all large enough n. Then, we have

f(xn)− f(x0)

xn − x0
=

1

αn
× (g ◦ f)(xn)− (g ◦ f)(x0)

xn − x0
→ (g ◦ f)′(x0)

g′(y0)
as n→∞.

Thus f ′(x0) exists and f ′(x0) =
(g ◦ f)′(x0)

g′(y0)

As a corollary to the above theorem we have the following useful formula.

Theorem 2.39 Suppose f : I → J is bijective function between open intervals I
and J . Suppose f is differentiable at a point x0 ∈ I and f ′(x0) 6= 0 and f−1 is
continuous at x0. Then f−1 is differentiable at y0 := f(x0), and

(f−1)′(y0) =
1

f ′(x0)
.

Proof. Note that (f ◦ f−1)(y)) = y for every y ∈ J . Hence by Theorem 2.38,
f−1 is differentiable at y0 and (f−1)′(y0) = 1/f ′(x0).

Remark 2.11 Recall that in Theorem 2.38 and Theorem 2.39 we assumed g′(y0) 6= 0
and f ′(x0) 6= 0. Can we obtain atleast differentiability without the above assump-
tions? Note that

(f−1)′(y0)f
′(x0) = 1.

Hence, Theorem 2.37 shows that the condition f ′(x0) 6= 0 is necessary in Theorem
2.39 for the differentiability of f−1 at x0. What about the case of Theorem 2.38? In
this case, f need not be differentiable at x0 if g′(y0) = 0, as the following example
shows. Let

f(x) = |x|, g(x) = x2, x ∈ R.

Then (g ◦ f)(x) = x2 so that g ◦ f is differentiable at x0 = 0 and g is differentiable
at y0 := f(x0) = 0, but f is not differentiable at x0 = 0. Note that g′(y0) = 0. �

The derivatives of functions in the following examples, at certain points, are
obtained by using the properties proved above.
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Example 2.29 The following can be verified easily.

(i) For n ∈ N, if f(x) = xn, x ∈ R, then f ′(x) = nxn−1 for x ∈ R.

(ii) If f(x) = cosx = 1− 2 sin2(x/2), x ∈ R, then f ′(x) = − sinx for x ∈ R.

(iii) For x ∈ D := {x ∈ R : cosx 6= 0}, let f(x) = tanx. Then f ′(x) = sec2x for
x ∈ D. �

Example 2.30 Let f : R→ R be defined by

f(x) =

{
x sin(1/x) if x 6= 0,
0 if x 6= 0.

From the composition and product rules, it can be seen that f is differentiable at
every x0 6= 0. Now, let us check the differentiability at x0 = 0. For h in a deleted
the neighbourhood of 0, we have

f(h)− f(0)

h
=
h sin(1/h)

h
= sin(1/h).

Hence f ′(0) does not exist. �

Example 2.31 Let f : R→ R be defined by

f(x) =

{
x2 sin(1/x) if x 6= 0,
0 if x 6= 0.

In this case also, is differentiable at every x0 6= 0 follows from the composition and
product rules. Now, let x0 = 0 and h be a deleted the neighbourhood of 0. Then

f(h)− f(0)

h
=
h2 sin(1/h)

h
= h sin(1/h).

Since 0 ≤ |h sin(1/h)| ≤ |h|, lim
h→0

h sin(1/h) exists and it is equal to 0. Hence f ′(0)

exists and f ′(0) = 0. �

Example 2.32 Let f(x) = x|x|, x ∈ R. Thus,

f(x) =

{
x2 if x ≥ 0,
−x2 if x < 0.

Note that for f is differentiable for x 6= 0, and f ′(x) = 2|x|, x 6= 0. Now, let us
check the differentiability at 0. For x 6= 0, we have

x > 0 =⇒ f(x)− f(0)

x
=
x2

x
= x,

x < 0 =⇒ f(x)− f(0)

x
=
−x2

x
= −x.

Thus, f ′+(0) = 0 and f ′−(0) = 0 so that f is differentiable at 0 and f ′(0) = 0. Hence,
f ′(x) = 2|x| for every x ∈ R. �
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Example 2.33 For a > 0, the function ax is differentiable for every x ∈ R and

(ax)′ = ax ln a ∀x ∈ R.

By the composition rule in Theorem 2.37,

(ax)′ = (ex ln a)′ = ex ln a ln a = ax ln a.

�

Example 2.34 The function lnx is differentiable for every x > 0, and

(lnx)′ =
1

x
, x > 0.

To see this, let f(x) = lnx and g(x) = ex. Then we have g(f(x)) = x for every
x > 0. Since g ◦ f is differentiable, g is differentiable, and g′(y) = ey 6= 0 for every
y ∈ R, it follows by Theorem 2.37 that f is differentiable for every x > 0 and we
have g′(f(x))f ′(x) = 1. Thus,

1 = elnx(lnx)′ = x(lnx)′

so that (lnx)′ = 1/x. �

Example 2.35 For a > 0, the function loga x is differentiable for every x > 0, and

(loga x)′ =
1

x ln a
, x > 0.

We know that

loga x =
lnx

ln a
.

Hence, (loga x)′ =
1

x ln a
for every x > 0. �

Example 2.36 For r ∈ R, let f(x) = xr for x > 0. Then f is differentiable for
every x > 0 and

f ′(x) = rxr−1, x > 0.

By the composition rule in Theorem 2.37,

f ′(x) = (er lnx)′ = er lnx
r

x
=
xrr

x
= rxr−1.

�

Exercise 2.18 Prove the following.

(i) The function ln |x| is differentiable for every x ∈ R with x 6= 0, and

(ln |x|)′ = 1

x
, x 6= 0.

(ii) For a > 0, the function loga |x| is differentiable for every x ∈ R with x 6= 0,
and

(loga |x|)′ =
1

x ln a
, x 6= 0.

J
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2.3.4 Maxima and minima

Recall from Theorem 2.19 that if f : [a, b]→ R is a continuous function, then there
exists x0, y0 in [a, b] such that

f(x0) ≤ f(x) ≤ f(y0) ∀x ∈ [a, b].

In this case, we write

f(x0) = min
a≤x≤b

f(x) and f(y0) = max
a≤x≤b

f(x).

Definition 2.19 A (real valued) function f defined on an interval I (of finite or
infinite length) is said to attain

(a) global maximum at a point x1 ∈ I if f(x) ≤ f(x1) for all x ∈ I, and

(b) global minimum at a point x2 ∈ I if f(x2) ≤ f(x) for all x ∈ I.

The function f is said to attain global extremum at a point x0 ∈ I if f attains
either global maximum or global minimum at x0. �

Thus, a continuous function f defined on a closed and bounded interval I attain
global maximum and global minimum at some points in I.

In Remark 2.4 we have seen that a function f defined on an interval I need not
attain maximum or minimum if either I is not closed and bounded or if f is not
continuous. However, maximum or minimum can attain in a subinterval. To take
care of these cases, we introduce the following definition.

Definition 2.20 A (real valued) function f defined on an interval I (of finite or
infinite length) is said to attain

(a) local maximum at a point x1 ∈ I if

f(x) ≤ f(x1)

for all x in a deleted neighbourhood of x1,

(b) local minimum at a point x2 ∈ if

f(x2) ≤ f(x)

for all x in a deleted neighbourhood of x2,

(c) strict local maximum and strict local minimum at x1 and x2, respec-
tively, if strict inequality holds in (a) and (b), respectively.
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The function f is said to attain

(d) local extremum at a point x0 ∈ I if f attains either local maximum or local
minimum at x0.

(e) strict local extremum at a point x0 ∈ I if f attains either strict local
maximum or strict local minimum at x0.

�

Remark 2.12 It is conventional to omit the adjective local in local maximum, local
minimum and local extremum. Thus when we say a function has maximum at a
point x0, we generally mean a local maximum at x0. Similar comments apply to
minimum and extremum. �

Exercise 2.19 Suppose f is a continuous function defined on an interval I and x0
is an interior point of I. Prove the following.

(i) If f is increasing (respectively, strictly increasing) on (x0−h, x0) and decreas-
ing (respectively, strictly decreasing) on (x0, x0 + h) for some h > 0, then f
attains local maximum (respectively, strict local maximum) at x0.

(ii) If “increasing” and “decreasing” in (i) above are interchanged, then in the
conclusion “maximum” can be replaced by “minimum”.

J

Theorem 2.40 (A necessary condition) Suppose f is a continuous function
defined on an interval I having local extremum at a point x0 ∈ I. If x0 is an
interior point of I (i.e., x0 is not an end point of I) and f is differentiable at x0,
then f ′(x0) = 0.

Proof. Suppose f attains local maximum at x0 which is an interior point of I.
Then there exists δ > 0 such that (x0 − δ, x0 + δ) ⊆ I and f(x0) ≥ f(x0 + h) for all
h with |h| < δ. Hence, for all h with |h| < δ,

f(x0 + h)− f(x0)

h
≥ 0 if h < 0,

f(x0 + h)− f(x0)

h
≤ 0 if h > 0.

Taking limit as h→ 0, we get f ′(x0) ≥ 0 and f ′(x0) ≤ 0 so that f ′(x0) = 0.

By analogous arguments, it can be shown that if f attains minimum at a point
y0 ∈ (a, b), then f ′(y0) = 0.



Differentiability of functions 91

Definition 2.21 Suppose f is defined on an interval I and x0 is an interior point
of I. If f ′(x0) exists and f ′(x0) = 0 or if f ′(x0) does not exist, then x0 is called a
critical point of f . �

Remark 2.13 A function can have more than one maximum and minimum. For
example, consider

f(x) = sin(4x), [0, π].

We see that f has maximum value 1 at π/8 and 5π/8, and has minimum value −1
at 3π/8 and 7π/8. �

Remark 2.14 (a) In view of Theorem 2.40, if a function f is differentiable at an
interior point x0 of an interval I and f ′(x0) 6= 0, then f can not have local maximum
or local minimum at x0.

(b) It is to be observed that in order to have a maximum or minimum at a point
x0, the function need not be differentiable at x0. For example

f(x) = 1− |x|, |x| ≤ 1,

has a maximum at 0 and
g(x) = |x|, |x| ≤ 1,

has a minimum at 0. Both f and g are not differentiable at 0.

(c) Also, if a function is differentiable at a point x0 and f ′(x0) = 0, then it is not
necessary that it has loal maximum or local minimum at x0. For example, consider

f(x) = x3, |x| < 1.

In this example, we have f ′(0) = 0. Note that f has neither local maximum nor
local minimum at 0. �

Next we give a sufficient condition of local extrema of functions. Before that we
define the concept of an increasing function and decreasing function.

In Sections 2.3.6 and 2.3.7, we shall give some sufficient conditions for existence
of local exrema of functions. Now, let us derive some important consequences of
Theorem 2.40.

2.3.5 Rolle’s theorem, mean value theorems and L’Hospital rules

Theorem 2.41 (Rolle’s theorem) Suppose f is a continuous function defined on
a closed and bounded interval [a, b] such that it is differentiable at every x ∈ (a, b).
If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Let g(x) = f(x)− f(a). Then we have

g(a) = 0 = g(b) and g′(x) = f ′(x) ∀x ∈ (a, b). (∗)
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Since g is continuous on [a, b], it attains the (global) maximum and (global)
minimum at some points x1 and x2, respectively, in [a, b], i.e., there exists x1, x2 in
[a, b] such that

g(x2) ≤ g(x) ≤ g(x1) ∀x ∈ [a, b].

If g(x1) = g(x2), then g is a constant function and hence g′(x) = 0 for all x ∈ [a, b].
Hence, assume that g(x2) < g(x1). Then, either g(x1) 6= 0 or g(x2) 6= 0. If g(x1) 6= 0,
then by (∗), x1 6∈ {a, b}, i.e., x1 ∈ (a, b) so that by Theorem 2.40, g′(x1) = 0 and
hence, f ′(x1) = 0.

Similarly, if g(x2) 6= 0, then we shall arrive at f ′(x2) = 0.

Exercise 2.20 Show that between any two roots of the equation ex cosx− 1 = 0,
there is at least one root of the equation ex sinx− 1 = 0. J

As a corollary to Rolle’s theorem we obtain the following.

Theorem 2.42 (Mean value theorem) Suppose f is a continuous function de-
fined on a closed and bounded interval [a, b] such that it is differentiable at every
x ∈ (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof. Let

ϕ(x) := f(x)− f(a)− f(b)− f(a)

b− a
(x− a), x ∈ [a, b].

Note that ϕ is continuous on [a, b], differentiable in (a, b), ϕ(a) = 0 = ϕ(b), and

ϕ′(x) := f ′(x)− f(b)− f(a)

b− a
, x ∈ (a, b).

By Rolle’s theorem (Theorem 2.41), there exists c ∈ (a, b) such that ϕ′(c) = 0.
Thus, f(b)− f(a) = f ′(c)(b− a).

Remark 2.15 The mean value theorem above is also called Lagrange’s mean value
theorem. �

Example 2.37 Let f be continuous on [a, b] and differentiable at every point in
(a, b). Suppose there exists c ∈ R such that

f ′(x) = c x ∈ (a, b).

Then there exists b ∈ R such that

f(x) = c x+ b ∀x ∈ [a, b].

In particular, f ′(x) = 0 for all x ∈ (a, b), then f is a constant function.
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To see this consider x0 ∈ (a, b). Then for any x ∈ [a, b], there exists ξx between
x0 and x such that

f(x)− f(x0) = f ′(ξx)(x− x0) = c(x− x0).

Hence, f(x) = f(x0) + c(x− x0). Thus, f(x) = c x+ b with b = f(x0)− c x0. �

Suppose f and g are continuous functions on [a, b] which are differentiable on
(a, b). Suppose further that g′(x) 6= 0 for all x ∈ (a, b). Then, by the mean value
theorem, there exist c1, c2 in (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c1)

g′(c2)
.

Question is whether we can assert the existence of a single point c ∈ (a, b) such
that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Answer is in affirmative as the following theorem shows.

Theorem 2.43 (Cauchy’s generalized mean value theorem) Suppose f and
g are continuous functions on [a, b] which are differentiable at every point in (a, b).
Suppose further that g′(x) 6= 0 for all x ∈ (a, b). Then, there exists c ∈ (a, b) such
that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

[Note that by Theorem 2.42, g′(x) 6= 0 for all x ∈ (a, b) implies that g(b)−g(a) 6= 0.]

Proof. First note that from the assumption on g, using Mean value theorem,
g(b) 6= g(a). Now, let

ϕ(x) := f(x)− f(a)− f(b)− f(a)

g(b)− g(a)
[g(x)− g(a)], x ∈ [a, b].

Note that ϕ is continuous on [a, b], differentiable in (a, b), ϕ(a) = 0 = ϕ(b), and

ϕ′(x) := f ′(x)− f(b)− f(a)

g(b)− g(a)
g′(x), x ∈ (a, b).

By Rolle’s theorem (Theorem 2.41), there exists c ∈ (a, b) such that ϕ′(c) = 0. This
completes the proof.

Exercise 2.21 Let 0 < a < b. Show that for every n ∈ N, a <
n[bn+1 − an+1]

(n+ 1)[bn − an]
< b.

[Hint: take f(x) = xn+1 and g(x) = xn.] J

If f is defined in a closed interval [a, b] and x0 = a or x0 = b, then by limx→x0f(x)
we mean limx→x0+f(x) if x0 = a and limx→x−0

f(x) if x0 = b.
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Theorem 2.44 (L’Hospital’s rule2) Suppose functions f and g are continuous
in a neighbourhood of a point x0 and differentiable in a deleted neighbourhood of
x0. Suppose

f(x0) = 0, g(x0) = 0 and lim
x→x0

f ′(x)

g′(x)
exists.

Then

lim
x→x0

f(x)

g(x)
exists and lim

x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Proof. Since lim
x→x0

f ′(x)

g′(x)
exists, there exists a deleted neighbourhood D0 of x0

in the domain of definition of f such that g′(x) 6= 0 for x ∈ D0. By Cauchy’s
generalized mean value theorem (Theorem 2.43), for every x ∈ D0, there exists ξx
between x and x0 such that

f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(ξx)

g′(ξx)
.

Since |ξx−x0| < |x−x0 and lim
x→x0

f ′(x)

g′(x)
exists, by using the limits of composition of

functions, lim
x→x0

f ′(ξx)

g′(ξx)
exists and it is equal to lim

x→x0

f ′(x)

g′(x)
. Thus, lim

x→x0

f(x)

g(x)
exists

and lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
. This completes the proof.

The following theorem is proved by modifying the arguments in the proof of
Theorem 2.44 .

Theorem 2.45 (L’Hospital’s rule) Suppose functions f and g are continuous in
a neighbourhood of a point x0 and differentiable in a deleted neighbourhood of x0.
Suppose

lim
x→x0

f(x) = 0, lim
x→x0

g(x) = 0 and lim
x→x0

f ′(x)

g′(x)
exists.

Then

lim
x→x0

f(x)

g(x)
exists and lim

x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Proof. Let f̃(x) =

{
f(x) ifx 6= x0
0 ifx = x0

and g̃(x) =

{
g(x) ifx 6= x0
0 ifx = x0

. Then,

the result is obtained from Theorem 2.44 by taking f̃ and g̃ in place of f and g,
respectively.

2L’Hospital is pronounced as Lopital. The rule is named after the 17th-century French mathe-
matician Guillaume de l’Hospital, who published the rule in his book Analyse des Infiniment Petits
pour l’Intelligence des Lignes Courbes (i.e., Analysis of the Infinitely Small to Understand Curved
Lines) (1696), the first textbook on differential calculus.
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Theorem 2.46 (L’Hospital’s rule) Suppose f and g are differentiable at every
point in (a,∞) for some a > 0. Suppose

lim
x→∞

f(x) = 0, lim
x→∞

g(x) = 0 and lim
x→∞

f ′(x)

g′(x)
exists.

Then

lim
x→∞

f(x)

g(x)
exists and lim

x→∞

f(x)

g(x)
= lim

x→∞

f ′(x)

g′(x)
.

Proof. Let f̃(y) = f(1/y) and g̃(y) = g(1/y) for 0 < y < 1/a. We note that

lim
x→∞

f(x) = 0 = lim
x→∞

g(x) ⇐⇒ lim
y→0

f̃(y) = 0 = lim
y→0

g̃(y).

Also, since

f̃ ′(y) = [f(1/y)]′ = f ′(1/y)(−1/y2), g̃′(y) = [g(1/y)]′ = g′(1/y)(−1/y2),

we have

lim
x→∞

f ′(x)

g′(x)
exists ⇐⇒ lim

y→0

f̃ ′(y)

g̃′(y)
exists.

Hence, applying Theorem 2.44 to f̃ , g̃ instead of f, g, we obtain the result.

Theorem 2.47 (L’Hospital’s rule) Suppose f and g are continuous functions on
[a, b] which are differentiable at every point in (a, b), except possibly at x0 ∈ [a, b].
Suppose

lim
x→x0

f(x) =∞, lim
x→x0

g(x) =∞ and lim
x→x0

f ′(x)

g′(x)
exists.

Then

lim
x→x0

f(x)

g(x)
exists and lim

x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Proof. Let β := lim
x→x0

f ′(x)

g′(x)
. First we consider the case of β 6= 0. In this case,

since

lim
x→x0

f(x) =∞ = lim
x→∞

g(x) ⇐⇒ lim
x→x0

(1/f(x)) = 0 = lim
x→x0

(1/g(x)),

the result follows from Theorem 2.45 by interchanging the roles of f and g.

To consider the general case where β is not necessarily non-zero, let x, y be
distinct points in a deleted neighbourhood of x0. Since g′(x) 6= 0 for x sufficiently
close to x0, in view of MVT, we can assume that g(x) 6= g(y). Note that,

f(x)− f(y)

g(x)− g(y)
=
f(x)

g(x)

[
1− f(y)

f(x)

]
[
1− g(y)

g(x)

] (1)
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Since f(x) → ∞ and g(x) → ∞ as x → x0, the above expression is meaningful for
each fixed y and x close enough to x0, and

lim
x→x0

[
1− f(y)

f(x)

]
= 1 = lim

x→x0

[
1− g(y)

g(x)

]
. (2)

Also, by GMVT, there exists ξx,y lying between x and y such that

f(x)− f(y)

g(x)− g(y)
=
f ′(ξx,y)

g′(ξx,y)
. (3)

From (1) and (3) above we have

f(x)

g(x)
=
f ′(ξx,y)

g′(ξx,y)

[
1− g(y)

g(x)

]
[
1− f(y)

f(x)

] . (4)

We observe that

|ξx,y − x0| ≤ |ξx,y − y|+ |y − x0| ≤ |x− y|+ |y − x0|.

Hence, ξx,y → x0 as x→ x0 and y → y0. Hence, by using the limits of composition
of functions, we obtain

lim
α→x0

f ′(ξx,α)

g′(ξx,α)
= lim

x→x0

f ′(x)

g′(x)
. (5)

Therefore, (2), (4), (5) imply that lim
x→x0

f(x)

g(x)
exists and

lim
x→x0

f(x)

g(x)
= lim

α→x0

f ′(ξx,α)

g′(ξx,α)

[
1− f(α)

f(x)

]
[
1− g(α)

g(x)

] = lim
x→x0

f ′(x)

g′(x)
.

This completes the proof.

Remark 2.16 The cases

(i) lim
x→−∞

f(x) = 0 = lim
x→−∞

g(x),

(ii) lim
x→x0

f(x) = −∞ = lim
x→x0

g(x)

can be treated analogously to the cases already discussed in the above theorems. �

2.3.6 Some consequences of mean value theorem

Increasing and decreasing functions

Theorem 2.48 Let f be continuous on [a, b] and differentiable on (a, b). Then

(i) f is increasing iff f ′(x) ≥ 0 for all x ∈ (a, b).
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(ii) f is decreasing iff f ′(x) ≤ 0 for all x ∈ (a, b).

(iii) f is strictly increasing if f ′(x) > 0 for all x ∈ (a, b).

(iv) f is strictly decreasing if f ′(x) < 0 for all x ∈ (a, b).

Proof. (i) Suppose f is increasing and x ∈ (a, b). Then

f(x+ h)− f(x)

h
≥ 0

for all h such that x+ h ∈ (a, b). Hence f ′(x) ≥ 0.

Conversely, suppose f ′(x) ≥ 0 for all x ∈ (a, b). Let x1, x2 ∈ [a, b] with x1 < x2.
Then, by mean value theorem, there exists ξ ∈ (x1, x2) such that

f(x2)− f(x1) = f ′(ξ)(x2 − x1).

Since f ′(ξ) ≥ 0, the above equation shows that f(x1) ≤ f(x2).

(ii) Follows as in the proof of (i) by reversing the inequalities.

(iii) Follows from the converse part of the proof of (i) by using f ′(ξ) > 0.

(iv) Follows as in the converse part of the proof of (i) by using f ′(ξ) < 0.

Example 2.38 Consider the function f(x) = x4 for x ∈ R. Then we have f ′(x) =
4x3 for all x ∈ R. Note that

f ′(x) > 0 ∀x > 0 and f ′(x) < 0 ∀x < 0.

Hence,

f is strictly increasing on (0,∞), and

f is strictly decreasing on (−∞, 0). �

A sufficient condition for local extremum point

Theorem 2.49 Suppose f is continuous on an interval I and x0 is an interior point
of I. Further suppose that f is differentiable in a deleted nbd of x0.

(i) If there exists an open interval I0 ⊆ I containing x0 such that

f ′(x) > 0 ∀x ∈ I0, x < x0 and f ′(x) < 0 ∀x ∈ I0, x > x0,

then f has local maximum at x0.

(ii) If there exists an open interval I0 ⊆ I containing x0 such that

f ′(x) < 0 ∀x ∈ I0, x < x0 and f ′(x) > 0 ∀x ∈ I0, x > x0,

then f has local minimum at x0.
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Proof. (i) Let x ∈ I0. Then, by mean value theorem, there exists ξx between x0
and x such that

f(x)− f(x0) = f ′(ξx)(x− x0).

By assumption,

x < x0 =⇒ f ′(ξx) > 0 and x > x0 =⇒ f ′(ξx) < 0.

Hence, in both the cases, we have f(x) < f(x0) so that f has local maximum at x0.
Thus, (i) is proved.

Similar arguments will lead to the proof of (ii).

Example 2.39 Consider

f(x) = x4, g(x) = 1− x4, |x| < 1.

Then f ′(x) = 4x3 is negative for x < 0 and positive for x > 0. Hence, by Theorem
2.49, f has local minimum at 0. Also, g′(x) = −4x3 is positive for x < 0 and
negative for x > 0. Hence, by Theorem 2.49, g has local maximum at 0. �

Remark 2.17 The conditions given in Theorem 2.49 cannot be dropped. For
example, consider f(x) = x3, x ∈ R. Then f ′(x) = 3x2 > 0 for all x 6= 0. Note that
f does not have extremum at 0. �

2.3.7 Higher derivatives and Taylor’s formula

Suppose f is defined on an open interval I and x0 ∈ I. If f is differentiable in a
neighbourhood of x0, then we can talk about the existence of higher derivatives of
f at x0.

Definition 2.22 Suppose f is differentiable in a neighbourhood of x0. Then f is
said to be twice differentiable at x0 if the function f ′ is differentiable at x0, i.e.,

lim
x→x0

f ′(x)− f ′(x0)
x− x0

exists, and in that case the limit is called the second derivative of f and it is
denoted by

f ′′(x0) or f (2)(x0) or
d2f

dx2
(x0).

�

Definition 2.23 For k ∈ N with k ≥ 2, f is said to be k times differentiable at
x0 ∈ I if f (k−1) is differentiable at x0, and in that case

f (k)(x0) := [f (k−1)]′(x0)
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is called the kth-derivative of f at x0, where f (1)(x), f (2)(x), . . . , f (k−1)(x) are
defined iteratively as

f (j)(x) := [f (j−1)]′(x), j = 1, . . . , k − 1

for x in a neighbourhood of x0 with f (0)(x) = f(x). �

Note that f (2)(x0) is the second derivative of f at x0.

Definition 2.24 The function f is said to be infinitely differentiable at a point
x0 ∈ I if for every k ∈ N, f has kth-derivative at x0. �

We may observe the following:

• If f is infinitely differentiable at a point x0 ∈ I, then for every k ∈ N, f has
kth-derivative not only at x0 but also at every point in some neighbourhood
of x0.

Example 2.40 For n ∈ N, let f(x) = xn, x ∈ R. Then we know that f (1)(x) =
f ′(x) = nxn−1. Hence, for k ≤ n, we have

f (k)(x) = n(n− 1) · · · (n− k + 1)xn−k

and f (k)(x) = 0 for k > n. Thus, f is infinitely differentiable in R. More generally,
if f is a polynomial, then f is infinitely differentiable in R. �

Example 2.41 Let f(x) = sinx, x ∈ R. Then we have

f (1)(x) = cosx, f (2)(x) = − sinx, f (3)(x) = − cosx, f (4)(x) = sinx,

and more generally for any k ∈ N,

f (2k−1)(x) = (−1)k+1 cosx, f (2k)(x) = (−1)k sinx.

Thus, f is infinitely differentiable in R. �

Example 2.42 Let f(x) = ex, x ∈ R. We know that f ′(x) = ex, x ∈ R. Hence, it
follows that f (k)(x) = ex, x ∈ R, for every k ∈ N so that f is infinitely differentiable
in R. �

Example 2.43 Let f(x) = x|x|, x ∈ R. We have seen in Example 2.32 that f is
differentiable at every point in R and f ′(x) = 2|x|. Thus, f is infinitely differentiable
at every x 6= 0, but differentiable only once at 0.

If fk(x) = xk|x|, x ∈ R, then it can be verified that f is infinitely differentiable
at every x 6= 0, f (k)(0) exists, but f (k+1)(0) does not exist. �
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Taylor’s formula

Our next attempt is to express a function f which is n+ 1 times differentiable in a
neighbourhood of a point x0 as

f(x) = f(x0) +

n∑
j=0

f (j)(x0)

j!
(x− x0)j +

f (n+1)(ξx)

(n+ 1)!
(x− x0)n+1, (∗)

where ξx is a point lying between x0 and x. The above formula (∗) is called Taylor’s
formula. Before establishing (∗), let us look at a situation when f is a polynomial.

Suppose f(x) is a polynomial of degree n ∈ N and x0 ∈ R. Since f(x) − f(x0)
vanishes at x = x0, we can write

f(x) = f(x0) + (x− x0)f1(x),

where f1(x) is a polynomial of degree n− 1. By the same argument, if n > 1, then
f1 can be written as

f1(x) = f1(x0) + (x− x0)f2(x),

where f2(x) is a polynomial of degree n− 2. Thus,

f(x) = f(x0) + f1(x0)(x− x0) + (x− x0)f2(x).

Continuing this, there are polynomials f1(x), f2(x), . . . , fn−2(x), fn−1(x), fn(x) of
degree n− 1, n− 2, . . . , 2, 1, 0, respectively, such that

f(x) = f(x0) + f1(x0)(x− x0) + f2(x)(x− x0)2 + · · ·+ fn(x0)(x− x0)n.

Note that

f (1)(x0) = f1(x0), f (2)(x0) = 2!f2(x0), . . . , f
(n)(x0) = n!fn(x0),

so that

f(x) = f(x0) +
f (1)(x0)

1!
(x− x0) +

f (2)(x0)

2!
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n.

Now, suppose that f is a function which is n+ 1 times differentiable in a neigh-
bourhood of x0 for some k ∈ N. If we write,

P (x) = f(x0) +

n∑
k=1

f (k)(x0)

k!
(x− x0)k,

then we can write
f(x) = P (x) +R(x)

where R(x) := f(x) − P (x) is n + 1 times differentiable and R(x0) = 0. We may
also observe that

R(k)(x0) = 0 for k = 1, . . . , n.

Taylor’s formula gives a specific expression for R(x) in terms of the (n+1)th deriva-
tive of f at a point ξ lying between x0 and x.
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Theorem 2.50 (Taylor’s formula) Suppose f is defined and has derivatives
f (1)(x), f (2)(x), . . . , f (n+1)(x) for x in a neighbourhood I0 of a point x0. Then,
for every x ∈ I0, there exists ξx between x and x0 such that

f(x) = f(x0) +

n∑
j=1

f (j)(x0)

j!
(x− x0)j +

f (n+1)(ξx)

(n+ 1)!
(x− x0)n+1.

Proof. Let x ∈ I with x 6= x0, and let

Pn(y) = f(x0) +
n∑
j=1

f (j)(x0)

j!
(y − x0)j , y ∈ I.

Then Pn(y) is a polynomial of degree n, Pn(x0) = f(x0) and

P (j)
n (x0) = f (j)(x0), j ∈ {1, . . . , n}.

Now, let
g(y) = f(y)− Pn(y)− ϕ(x)(y − x0)n+1, y ∈ I,

where

ϕ(x) :=
f(x)− Pn(x)

(x− x0)n+1
.

Note that, by this choice of ϕ(x), we have g(x0) = 0 and g(x) = 0. Also, we have

g(1)(x0) = 0, g(2)(x0) = 0, . . . , g(n)(x0) = 0.

Since g(x0) = 0 = g(x), by Rolle’s theorem, there exists x1 between x0 and x such
that g′(x1) = 0. Since g′(x0) = 0 = g′(x1), again by Rolle’s theorem, there exists x2
between x0 and x1 such that g′′(x2) = 0. Continuing this, there exists ξx := xn+1

between x0 and xn such that g(n+1)(ξx) = 0. But,

g(n+1)(y) = f (n+1)(y)− P (n+1)
n (y)− ϕ(x)(n+ 1)! = f (n+1)(y)− ϕ(x)(n+ 1)!.

Thus, using the fact that g(n+1)(ξx) = 0, we have

ϕ(x) =
f (n+1)(ξx)

(n+ 1)!
.

Thus,

f(x) = Pn(x) +
f (n+1)(ξx)

(n+ 1)!
(x− x0)n+1,

and the proof is complete.

Proof using Cauchy’s GMVT. Let Rn(x) = f(x)− Pn(x), where

Pn(x) = f(x0) +
n∑
j=1

f (j)(x0)

j!
(x− x0)j .
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Since f (k)(x0) = P
(k)
n (x0) for k = 0, 1, . . . , n, we have

Rn(x0) = 0, R′n(x0) = 0, . . . , R(n)
n (x0) = 0.

Let ψ(x) = (x − x0)n+1. Now, let x ∈ I0, x 6= x0. Since ψ(x0) = 0 and ψ′(x) 6= 0,
by Cauchy’s generalized mean value theorem (GMVT), there exists x1 between x0
and x such that

Rn(x)

ψ(x)
=
Rn(x)−Rn(x0)

ψ(x)− ψ(x0)
=
R′n(x1)

ψ′(x1)
.

Again, since R′n(x0) = 0 = ψ′(x0) and ψ′′(x) 6= 0, by GMVT, there exists x2 between
x0 and x1 such that

R′n(x1)

ψ′(x1)
=
R′n(x1)−R′n(x0)

ψ′(x)− ψ′(x0)
=
R′′n(x2)

ψ′(x2)
.

Continuing this, at the (n+ 1)th stage, there exists xn between x0 and xn such that

R
(n)
n (xn)

ψ(n)(xn)
=
R

(n)
n (xn)−R(n)

n (x0)

ψ(n)(xn)− ψ(n)(x0)
=
R

(n+1)
n (xn+1)

ψ(n+1)(xn+1)
=
f (n+1)(xn+1)

(n+ 1)!
.

Thus,

Rn(x) =
f (n+1)(xn+1)

(n+ 1)!
ψ(x) =

f (n+1)(xn+1)

(n+ 1)!
(x− x0)n+1.

This completes the proof.

Remark 2.18 The first and second proofs given above for Theorem 2.50 are adapted
from the books [3] and [2], respectively. In the next Chapter we shall give another,
rather simpler proof for this. �

Definition 2.25 In the Taylor’s formula (Theorem 2.50), the polynomial

Pn(x) = f(x0) +
n∑
j=1

f (j)(x0)

j!
(x− x0)j

is called the Taylor’s polynomial of f of degree n around x0, and the term

Rn(x) :=
f (n+1)(ξx)

(n+ 1)!
(x− x0)n+1

is called the remainder term in the formula. �

We observe that if f is infinitely differentiable and if

|Rn(x)| → 0 as n→∞

for every x ∈ I, then

f(x) = f(x0) +

∞∑
n=1

f (n)(x0)

n!
(x− x0)n, x ∈ I.
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Definition 2.26 If f is infinitely differentiable in a neighbourhood of x0 and if it
can be represented as a series

f(x) = f(x0) +
∞∑
n=1

f (n)(x0)

n!
(x− x0)n, x ∈ I

for all x in a neighbourhood of x0, then such a series is called the Taylor series
of f around the point x0. If x0 = 0, the corresponding Taylor series is called the
Maclaurin series of f . �

Observe that if f (n+1) is bounded in a neighbourhood of x0, i.e., there exists
Mn > 0 such that say |f (n+1)(x)| ≤Mn for all x in that neighbourhood, then

|f(x)− Pn(x)| ≤ Mn|x− x0|n+1

(n+ 1)!
.

In particular, if f is infinitely differentiable, and if there exists M > 0, independent
of n such that |f (n+1)(x)| ≤M for all x in a neighbourhood I0 of x0, then

|f(x)− Pn(x)| ≤ M |x− x0|n+1

(n+ 1)!
→ 0

so that f has the Taylor series expansion

f(x) = f(x0) +
∞∑
n=1

f (n)(x0)

n!
(x− x0)n

for all x ∈ I0.

Remark 2.19 A natural question that one may ask is:

Does every infinitely differentiable function in a neighbourhood of x0
has a Taylor’s series expansion?

Unfortunately, the answer is negative. For example, if we define

f(x) =

{
e−1/x

2
, x 6= 0,

0, x = 0,

then it can be seen that f(0) = 0 and f (k)(0) = 0 for all k ∈ N. Thus, f does not
have the Taylor’s series expansion around the point 0. �

Example 2.44 Let f(x) = ex for x ∈ R. Then we know that f (k)(x) = ex so that
for any x0, x ∈ R,

Rn(x) :=
f (n+1)(ξx)

(n+ 1)!
(x− x0)n+1 =

eξx

(n+ 1)!
(x− x0)n+1.
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Since eξx ≤ ψ(x) := max{ex0 , ex}, we have

|Rn(x)| ≤ ψ(x)
|x− x0|n+1

(n+ 1)!
→ 0.

Hence, f has the Taylor series expansion

ex = ex0

[
1 +

∞∑
n=1

(x− x0)n

n!

]
.

for every x, x0 ∈ R. Observe that the function which represents the series within
the bracket is nothing but ex−x0 . �

Example 2.45 Using Taylor’s formula, we shall show that

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
∀x ∈ R.

For this, let f(x) = sinx and x0 = 0. Since f is infinitely differentiable, and

f2j(0) = 0, f2j−1(0) = (−1)j ∀ j ∈ N,

we have

f(x) = f(x0) +
2n+1∑
j=1

f (j)(0)

j!
xj +

f (2n+2)(ξx)

(2n+ 2)!
x2n+2

= f(x0) +

n∑
j=0

f (2j+1)(0)

(2j + 1)!
x2j+1 +

f (2n+2)(ξx)

(2n+ 2)!
x2n+2

= f(x0) +

n∑
j=0

(−1)j

(2j + 1)!
x2j+1 +

f (2n+2)(ξx)

(2n+ 2)!
x2n+2

Also, since | sinx| ≤ 1, we have

∣∣∣f (2n+2)(ξx)x2n+2

(2n+ 2)!

∣∣∣ ≤ |x|2n+2

(2n+ 2)!
→ 0 as n→∞.

Therefore,

∣∣∣f(x)−
[
f(x0) +

n∑
j=0

(−1)j

(2j + 1)!
x2j+1

]∣∣∣→ 0 as n→∞

and hence, sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
∀x ∈ R. �
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Exercise 2.22 Suppose f is infinitely differentiable in an open interval I and x0 ∈ I.
Further, suppose that there exists M > 0 such that

|f (k)(x)| ≤M ∀x ∈ I, ∀k ∈ N ∪ {0}.

Then show that

f(x) = f(x0) +
∞∑
n=1

f (n)(x0)

n!
(x− x0)n, x ∈ I.

J

Exercise 2.23 Using Taylor’s formula, prove the following:

(i) cosx =
∞∑
n=0

(−1)nx2n

(2n)!
for all x ∈ R.

(ii)
1

1− x
=
∞∑
n=0

xn for all x with |x| < 1.

(iii) tan−1 x =
∞∑
n=0

(−1)nx2n+1

2n+ 1
for all x ∈ R.

(iv) From (iii), deduce then Madhava-Gregory series for π/4, i.e.,
π

4
=
∞∑
n=0

(−1)n

2n+ 1
.

J

Another sufficient condition for extremum points

Theorem 2.51 Suppose f is defined on an interval I and x0 is an interior point
of I. Suppose that x0 is a critical point of f , i.e., f ′(x0) = 0, and f has continuous
continuous second derivative in a neighbourhood of x0. Then we have the following:

(i) If f ′′(x0) < 0, then f has local maximum at x0.

(ii) If f ′′(x0) > 0, then f has local minimum at x0.

Proof. By Taylor’s theorem, there exists an open interval I0 containing x0 such
that for every x ∈ I0, there exists ξx between x0 and x such that

f(x)− f(x0) = f ′(x0)(x− x0) +
f ′′(ξx)

2
(x− x0)2 =

f ′′(ξx)

2
(x− x0)2. (∗)

(i) Suppose f ′′(x0) < 0. Since f ′′ is continuous in a nbd of x0, there exists an
open interval I1 containing x0 such that for all x ∈ I1,

f ′′(x) ≤ f ′′(x0)

2
.
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In particular, from (∗), we obtain

f(x)− f(x0) =
f ′′(ξx)

2
(x− x0)2 < 0 ∀x ∈ I1.

Thus, f has a maximum at x0.

(ii) Suppose f ′′(x0) > 0. Then, we obtain reverse of the inequalities in the proof
of (i), and arrive the conclusion that f has a minimum at x0.

Remark 2.20 The conditions given in Theorem 2.51 are only sufficient conditions.
There are functions f for which none of the conditions (i) and (ii) are satisfied at a
point x0, still f can have local extremum at x0. For example, consider

f(x) = x4, g(x) = 1− x4, |x| < 1.

Then f ′(0) = 0 = g′(0), f has local minimum at 0 and g has local maximum at 0.
But, f ′′(0) = 0 = g′′(0). �

Remark 2.21 How to identify critical points and extreme points of a function?

1. Suppose f is defined on an open interval I.

(a) Find those points at which either f is not differentiable or f ′ vanish.
These points are the critical points of f .

(b) Suppose f ′(x0) = 0.

i. If f ′(x) has the same sign for x on both side of x0, then f does not
have an extremum at x0. Otherwise,

ii. use the test for maximum or minimum as given in Theorem 2.49.

2. Suppose f is continuous on [a, b] and differentiable on (a, b).

(a) f can have maximum or minimum only the at the end points of [a, b] or
at those points in (a, b) at which f ′ vanishes.

(b) Use the tests as in Theorem 2.49 or Theorem 2.51.

�
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2.3.8 Determination of shapes of a curves

We shall use conditions on derivatives of a function to find out certain nature of
the curve determined by a function. First we spell out what is meant by a curve
determined by a function.

Definition 2.27 Let f be a continuous function defined on an interval I. Then the
graph of f , i.e.,

Gf := {(x, f(x) : x ∈ I},

is called a curve determined by f . �

A curve determined by a function f : I → R is often written as

y = f(x), x ∈ I.

Definition 2.28 Let f be a continuous function defined on an interval I. Then the
curve determined by f is said to be

1. convex upwards or concave downwards if f is differentiable at all interior
points of I and the tangent line at each point x ∈ I lies above the curve,

2. concave upwards convex downwards if f is differentiable at all interior
points of I and the tangent line at each point x ∈ I lies below the curve.

�

Thus, if f is defined on an interval I and differentiable at all interior points of
I, then the curve determined by f is

• convex upwards if and only if for any interior point x0 of I,

x ∈ I \ {x0}, y = f(x0) + f ′(x0)(x− x0) =⇒ f(x) < y,

• convex downwards if and only if for any interior point x0 of I,

x ∈ I \ {x0}, y = f(x0) + f ′(x0)(x− x0) =⇒ f(x) > y.

Theorem 2.52 Let f be a continuous function defined on an interval I. Suppose f
has second derivative at all interior points of I. Then the curve determined by f is

(i) convex upwards if f ′′(x) < 0 for all interior points x in I, and

(ii) convex downwards if f ′′(x) > 0 for all interior points x in I.

Proof. Suppose f ′′(x) < 0 for all interior points x in I. Let x0 be any point in
the interior of I. We have to show that

x ∈ I, y = f(x0) + f ′(x0)(x− x0) =⇒ f(x) < y.
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So let x ∈ I and y = f(x0) + f ′(x0)(x − x0). By Taylor’s theorem, there exists cx
between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(cx)

2
(x− x0)2

so that, using the fact that f ′′(cx) < 0,

f(x) = y +
f ′′(cx)

2
(x− x0)2 < y.

Hence, Gf is convex upwards, proving (i). Proof of (ii) follows analogously.

Example 2.46 (i) Let f(x) = x2 and g(x) = 1− x2 for x ∈ R. Then Gf is convex
downwards and Gg is convex upwards.

(ii) Let f(x) = ex, x ∈ R. Note that f ′′(x) > 0 for all x ∈ R. Hence, by the
Theorem 2.52, y = ex is convex downwards on R.

(iii) Let f(x) = x3, x ∈ R. Note that f ′′(x) = 6x so that, by the Theorem 2.52,
the curve y = x3 is convex upwards for x < 0 and convex downwards for x > 0. �

Definition 2.29 A point (x0, y0) on the the curve determined by a function f is
said to be a point of inflection of the curve if in a neighbourhood of x0, the curve
is convex upward on one side of x0 and convex downward on other side of x0. �

Example 2.47 In view of the conclusions in Example 2.46 (iii), the point (0, 0) on
the curve y = x3 is a point of inflexion. �

Theorem 2.53 Suppose f has second derivative in a deleted neighbourhood of a
point x0. Then the point (x0, f(x0)) is a point of inflection of the curve Gf if f ′′

has constant but different signs on each side of x0, and at at the point x0, either
f ′′(x0) does not exist or f ′′(x0) = 0.

Proof. This a consequence of Theorem 2.52.

Theorem 2.54 Suppose f has second derivative in a neighbourhood I0 of a point
x0. If (x0, f(x0)) is a point of infection of the curve Gf and if f ′′ is continuous at
x0, then f ′′(x0) = 0.

Proof. Suppose (x0, f(x0)) is a point of infection of the curve Gf and f ′′ is
continuous at x0. Without loss of generality, assume that Gf is convex upward for
x ∈ I0, x < x0 and it is convex downward for x ∈ I0, x > x0. Thus,

x ∈ I0, x < x0 =⇒ f(x) < f(x0) + f ′(x0)(x− x0), (1)

x ∈ I0, x > x0 =⇒ f(x) > f(x0) + f ′(x0)(x− x0). (2)
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So, let x ∈ I0. By Taylor’s theorem, there exists cx between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(cx)

2
(x− x0)2.

Now, (1) implies that f ′′(cx) < 0 so that by letting x → x0, we have f ′′(x0) ≤ 0.
Also, (2) implies that f ′′(cx) > 0 so that by letting x → x0, we have f ′′(x0) ≥ 0.
Thus, f ′′(x0) = 0.

2.4 Additional exercises

2.4.1 Limit

1. Using the definition of limit, show that lim
x→3

x

4x− 9
= 1.

2. Show that the function f defined by f(x) =

{
x, if x < 1,
1 + x, if x ≥ 1

does not

have the limit as x→ 1.

3. Let f be defined by f(x) =


3− x, if x > 1,
1, if x = 1,
2x, if x < 1.

Find lim
x→1

f(x). Is it f(1)?

4. Let f be defined on a deleted neighbourhood D0 of a point x0 and lim
x→x0

f(x) =

b. If b 6= 0, then show that there exists δ > 0 such that f(x) 6= 0 for every
x ∈ (x0 − δ, x0 + δ) ∩D0.

5. Let f be defined by f(x) =

{
1, if x ∈ Q,
0, if x 6∈ Q. Show that

(i) lim
x→0

f(x) does not exist, and

(ii) lim
x→0

xf(x) = 0.

6. Suppose lim
x→∞

f(x) =∞ and lim
x→∞

g(x) = b. Show that lim
x→∞

g(f(x)) = b.

7. Let f : (0,∞)→ R be such that lim
x→0

f(x) = b. Show that lim
x→∞

f(x−1) = b.

8. Verify the following.

(a) If lim
x→∞

f(x) = b and lim
x→∞

g(x) = c, then

lim
x→∞

[f(x) + g(x)] = b+ c, lim
x→∞

f(x)g(x) = bc.
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(b) If If lim
x→∞

f(x) = b, lim
x→∞

g(x) = c and c 6= 0, then there exists M0 > 0

such that g(x) 6= 0 for all x > M0 and

lim
x→∞

f(x)

g(x)
=
b

c
.

9. State and prove sequential characterization for

lim
x→a

f(x) =∞, lim
x→a

f(x) = −∞, lim
x→+∞

f(x) =∞,

lim
x→+∞

f(x) = −∞, lim
x→−∞

f(x) =∞, lim
x→−∞

f(x) = −∞.

2.4.2 Continuity

1. Suppose f : [a, b] → R is continuous. If c ∈ (a, b) is such that f(c) > 0, and
if 0 < β < f(c), then show that there exists δ > 0 such that f(x) > β for all
x ∈ (c− δ, c+ δ) ∩ [a, b].

2. Let f : R → R satisfy the relation f(x + y) = f(x) + f(y) for every x, y ∈ R.
If f is continuous at 0, then show that f is continuous at every x ∈ R, and in
that case f(x) = xf(1) for every x ∈ R.

3. There does not exist a continuous function f from [0, 1] onto R – Why?

4. Find a continuous function f from (0, 1) onto R.

5. Suppose f : [a, b]→ [a, b] is continuous. Show that there exists c ∈ [a, b] such
that f(c) = c.

6. There exists x ∈ R such that 17x19 − 19x17 − 1 = 0 – Why?

7. If p(x) is a polynomial of odd degree, then there exists at least one ξ ∈ R such
that p(ξ) = 0.

8. Suppose f : R→ R is continuous such that f(x)→ 0 as |x| → ∞. Prove that
f attains either a maximum or a minimum.

9. Suppose f : [a, b]→ R is continuous such that for every x ∈ [a, b], there exists

a y ∈ [a, b] such that |f(y)| ≤ |f(x)|
2

. Show that there exists ξ ∈ [a, b] such

that f(ξ) = 0.

10. Suppose f : [a, b]→ [a, b] is continuous such that there |f(x)−f(y)| ≤ 1

2
|x−y|

for all x, y ∈ [a, b]. Show that there exists ξ ∈ [a, b] such that f(ξ) = ξ.

11. Write details of the proof of Corollary 2.20.

12. Prove the followiing.
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(a) Let f : (a, b) → R be a continuous function. If f(x) → c as x → a and
f(x) → d as x → b, where c, d, then for every y ∈ (c, d), there exists
x ∈ (a, b) such that f(x) = y.

(b) Let f : R → R be a continuous function. If f(x) → c as x → −∞ and
f(x) → d as x → ∞, where c, d, then for every y ∈ (c, d), there exists
x ∈ R such that f(x) = y.

(c) Let f : R → R be a continuous function. If f(x) → c as x → −∞ and
f(x) → ∞ as x → ∞, where c, d, then for every y ∈ (c,∞), there exists
x ∈ R such that f(x) = y.

13. From Problem 12, deduce that for every y ∈ (0,∞), there exists x ∈ R such
that ex = y.

14. Prove that if f is strictly monotonic on an interval I, then f is injective on I.

15. Let f be a continuous function defined on an interval I. Show that if f is
injective, then it is strictly monotonic on I [Hint: Use Intermediate Value
Theorem].

16. Let f be a continuous function defined on an interval I. Show that if f is
injective, then its inverse from its range is continuous.

2.4.3 Differentiation

1. Prove that the function f(x) = |x|, x ∈ R is not differentiable at 0.

2. Consider a polynomial p(x) = a0 + a1x
2 + . . . + anx

n with real coefficients

a0, a1, . . . , an such that a0 +
a1
2

+
a2
3

+ . . .+
an
n+ 1

= 0. Show that there exists

x0 ∈ R such that p(x0) = 0.

[Note that the conclusion need not hold if the condition imposed on the coef-
ficients is dropped. To see this, consider p(x) = 1 + x2.]

3. Let I and J be open intervals and f : I → J be bijective and differentiable at
every x0 ∈ I. If f ′(x0) 6= 0, then show that the inverse function f−1 : J → I
is also differentiable at x0 and and (f−1)′(x0) = 1/f ′(x0).

4. Using Taylor’s theorem, show that

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + . . .+ xn.

5. Show that there does not exist a function f : [0, 1]→ R which is differentiable

on (0, 1) such that f ′(x) =

{
0, if 0 < x < 1/2,
1, if 1/2 ≤ x < 1.

[Hint: Use Example 2.37 in the interval [0, 1/2] and [1/2, 1] taking x0 = 1/2,
and show that the resulting function f is not differentiable at x0 = 1/2.]


