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Abstract

The number e peeps out in several places in Calculus. We come across more than
one definitions and several properties of this number; and more often than not we are
left confused by thinking how there can be so many different approaches to the same
number. In this article, we seek connections between those various results involving
the number e.

1 Introduction

The number e is seen in several places in Calculus, for example

e = lim
n→∞

(
1 +

1

n

)n
(1)

e = 1 +
1

1!
+

1

2!
+

1

3!
+ . . . (2)

lim
x→0

ex − 1

x
= 1 (3)

d

dx
(ex) = ex (4)

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . (5)

Among these, (1), (2), (5) are directly defining e. And (3), (4) are properties of e;
but they can also be used to define e :

a = e is the unique number for which lim
x→0

ax − 1

x
= 1 and

d

dx
(ax) = ax. (6)

Now, its natural to ask, how are the different definitions give the same e ? And how
the above equations relate to one another? In this article, we are going to settle
down these questions.
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2 Defining e

I think the first time one encounters with e is while learning logarithms, where
textbooks introduce e as an ‘irrational’ number defined by

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · . (7)

And then they say log to the base e is called the ‘natural’ logarithm. Now, for
obvious reasons we are left confused with questions like “why irrational?” , “why
natural?”. We shall resolve these questions later. Before that, let us begin by
defining e using that series. But for that, we should first ensure that the above
series ‘converges’.

Define sn = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · + 1

n!
for n ≥ 1. We know, the series in (7)

converges if and only if the sequence {sn}n≥1 converges. Observe that the sequence

sn is increasing. And using the inequality n! = 2 · 3 · 4 · . . . n ≥ 2n−1 (for every

n ≥ 2) we get

1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+ 1

n!
≤ 1 + 1 +

1

2
+

1

22
+ · · ·+ 1

2n−1
< 1 + 1 +

1

2
+

1

22
+ · · · = 3.

Thus, the sequence sn is increasing and bounded, hence converges to some real
number. We name that real number to be e :

e := lim
n→∞

sn = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · .

Next, we shall see another famous definition of e, with a historical story. Jacob
Bernoulli discovered this constant in 1683 by studying a question about compound
interest:

An account starts with $1.00 and pays 100% interest per year. If the interest
is credited once, at the end of the year, the value of the account at year-end will
be $2.00. What happens if the interest is computed and credited more frequently
during the year? If the interest is credited twice in the year, the interest rate for
each 6 months will be 50%, so the initial $1 is multiplied by 1.5 twice, yielding
$1.00× 1.52 = $2.25 at the end of the year. Compounding quarterly yields $1.00×
(1 + 1/4)4 = $2.4414..., and compounding monthly yields $1.00 × (1 + 1/12)12 =
$2.613035... If there are n compounding intervals, the interest for each interval will
be 100/n % and the value at the end of the year will be $1.00(1 + 1/n)n.

Bernoulli noticed that if we make n larger and larger (and hence the compound-
ing intervals get smaller and smaller), then this sequence approaches a limit - with
continuous compounding, the account value will reach $2.7182818... . This gives an
alternate definition of e: we write e = lim

n→∞
(1 + 1/n)n.

We shall first establish that this limit exists or not. But there is a new problem:
even if we show that the limit exists, we can not redefine e; rather we have to show
the two definitions are equivalent. So we need to show that

lim
n→∞

(
1 +

1

n

)n
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . . . (8)
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Let us write tn = (1 + 1
n
)n for n ≥ 1. The Binomial Theorem gives(

1 +
1

n

)n
=

n∑
k=0

(
n

k

)
1

nk
=

n∑
k=0

1

k!

n(n− 1) . . . (n− k + 1)

nk

=
n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− k − 1

n

)
This gives us a motivation for (8) to be true: when n gets larger and larger, the
last sum gets closer and closer to the sum

∑n
k=1 1/k!. That is,(

1 +
1

n

)n
=

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− k − 1

n

)
≈

n∑
k=0

1

k!
for large n.

This was just a motivation. Let us do everything rigorously now : Note that,

tn =
(

1 +
1

n

)n
=

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− k − 1

n

)
≤

n∑
k=0

1

k!
= sn

Therefore, for every n ≥ 1 we have tn ≤ sn. On the other hand, for n ≥ m,

n∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− k − 1

n

)
≥

m∑
k=0

1

k!

(
1− 1

n

)(
1− 2

n

)(
1− k − 1

n

)
. . . (∗)

≥
m∑
k=0

1

k!

(
1− 1

m

)(
1− 2

m

)(
1− k − 1

m

)
.

This gives tn ≥ tm whenever n ≥ m. Thus, the sequence tn is increasing and

tn ≤ sn < 3 (we showed sn < 3 earlier), hence tn converges. Say t = lim
n→∞

tn. Now,

tn ≤ sn tells us that t ≤ e. And letting n → ∞, (∗) tells us that t ≥ sm. Then,

letting m→∞, we get t ≥ e. Combining these two, we obtain t = e, as required.

Next, let us establish why e is irrational. Let, if possible, e be rational, say
e = p/q where p, q are positive integers. So, we have

p

q
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . . .

Multiplying both sides of last equation with q!, we get

p · (q − 1)! = q!
(

1 + +
1

1!
+

1

2!
+ · · ·+ 1

q!

)
+ q!

( 1

(q + 1)!
+

1

(q + 2)!
+ . . .

)
Thus, x = q!

( 1

(q + 1)!
+

1

(q + 2)!
+ . . .

)
=

1

(q + 1)
+

1

(q + 2)(q + 1)
+ . . . must be

an integer. But,

1

(q + 1)
+

1

(q + 2)(q + 1)
+ · · · ≤ 1

(q + 1)
+

1

(q + 1)2
+ · · · = 1

1− 1/(1 + q)
− 1 =

1

q

which shows that 0 < x < 1, so x can’t be an integer. This contradiction proves
that e must be irrational.
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3 The Big Trap

Let me present it in the form of a conversation:

Teacher: How to show
d

dx
(ex) = ex ?

Student 1: We have
d

dx
(ex) = lim

h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
= ex.

Teacher: Tell me how to prove lim
h→0

eh − 1

h
= 1.

Now student 1 has no answer. Then, another student says:

Student 2: Why not show
d

dt
log t =

1

t
directly from definition! We have

d

dx
(log x) = lim

h→0

log(x+ h)− log x

h
= lim

h→0

log(1 + h/x)

h
=

1

x
lim
u→0

log(1 + u)

u
=

1

x
.

Teacher: Okay, then tell how to show lim
u→0

log(1 + u)

u
= 1 ?

Student 2: We substitute 1 +u = ez. As u→ 0, ez = 1 +u→ 1 so z → 0. Hence

lim
u→0

log(1 + u)

u
= lim

z→0

z

ez − 1
= 1.

Teacher: So both of you are using lim
h→0

eh − 1

h
= 1. But how to prove this one ?

After a little silence, another student says

Student 3: We know, eh = 1 + h+
h2

2!
+
h3

3!
+ . . . , hence

lim
h→0

eh − 1

h
= lim

h→0

( h
2!

+
h2

3!
+ . . .

)
= 0.

Teacher: And how do you establish that series ?

Student 3: That’s the Taylor Series for ex. We have, for f(x) = ex,

eh = f(h) = f(0) + hf ′(0) +
h2

2!
f ′′(0) + · · · = 1 + h+

h2

2!
+ · · · .

Teacher: And how do you get f ′(0) = 1 ?

Student 3: Because f ′(x) = ex.

Student 1: But to prove f ′(x) = ex, we needed that limit; and you are proving

that limit using f ′(x) = ex !!!

Teacher: Correct. This is the trap!
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4 Escaping from the trap

To escape the trap, we take a somewhat reverse route. We define

L(x) =

∫ x

1

1

t
dt for x > 0.

We shall deduce that it is same as our familiar loge x, i.e. L(x) = loge x or, eL(x) = x
for all x > 0. (Note that we can not directly evaluate the integral, because we don’t
know how to differentiate loge x, for now.)

Note: we are using the convention that

∫ a

b

f = −
∫ b

a

f if a < b.

4.1 Showing L(x) = loge x

First we show that, L(xy) = L(x) + L(y) for all x, y > 0.

L(xy)− L(y) =

∫ xy

y

dt

t
=

∫ x

1

du

u
(substituting t = yu) .

In the intermediate step, the substitution is justified, because the functions f(t) =
1/t and g(s) = ys are nice (continuous, differentiable, bijective in required domains).
Thus, for every x, y > 0, we have L(xy) = L(x) + L(y).

Using this, we get L(x2) = 2L(x), which yields L(x3) = L(x) + L(x2) = 3L(x)

and so on. Inductively, we get L(xn) = nL(x) for all x > 0 and for every natural

number n.

Next, observe that, using the substitution t = 1/z,

L
(1

x

)
=

∫ 1/x

1

dt

t
=

∫ x

1

z
−dz
z2

=

∫ x

1

−dz
z

= −L(x)

Combining this with L(xn) = nL(x) and using that L(x0) = L(1) = 0, we obtain

L(xn) = nL(x) for all x > 0, for all integer n.

Next, for any rational number α = p/q where p, q are integers, q 6= 0, note that

qL(xα) = L(xqα) = L(xp) = pL(x)⇒ L(xp/q) =
p

q
L(x).

Hence, L(xα) = αL(x) for all rational number α. Next, take any real number α.
There exists a sequence of rational numbers (an)n≥1 with lim an = α. Now, from
continuity of exponential the function1,

L(xα) = L( lim
n→∞

xan) = lim
n→∞

L(xan) = lim
n→∞

anL(x) = αL(x).

1Continuity of exponential functions (ax) is not something that can be proved, because it is what
defines the exponentiation. How to define 23 is clear to us : it is simply 2 times 2 times 2. But how does

one define 2
√
2? Following is the story of how to define ax:

First we define an for any real number a and natural number n, by saying an is a × a × . . . (n times).
Then we define an for all integer n, by saying a−n = 1/an for any natural number n and a0 = 1; but this
time we have to exclude a = 0. Because 0−1 is undefined. Next, we define an for all rational n by saying
ap/q is the q-th root of ap. But this time we have to exclude all the negative a’s because (−1)1/2 is not a
real number. (It can shown that for any a > 0 and natural number q, a1/q exists and is unique).

Finally, we define ax for all a > 0 and x real by taking limit of axn where xn is any sequence of rational

numbers tending to x. For instant, 2
√
2 is the limit of 2xn where (xn) is any sequence that tends to

√
2.

So, continuity is what defines exponentiation, for arbitrary real exponents.
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Thus, we have shown that L(xα) = αL(x) for all x > 0 and for all α ∈ R.
Next, we shall show that L(e) = 1. We know, the sequence xn = (1 + 1/n)n

tends to e as n→∞. And note that L(x) is a continuous function, by Fundamental
Theorem of Calculus. So continuity of L tells us that L(xn) tends to L(e) as n→∞.

L(e) = lim
n→∞

L
(

1 +
1

n

)n
= lim

n→∞
nL
(

1 +
1

n

)
= lim

n→∞
n

∫ 1+1/n

1

dt

t

Now, for t ∈ [1, 1 + 1/n], we have
1

1 + 1/n
≤ 1

t
≤ 1. Hence,

1/n

1 + 1/n
=

∫ 1+1/n

1

dt

1 + 1/n
≤
∫ 1+1/n

1

dt

t
≤
∫ 1+1/n

1

dt =
1

n

which gives
1

1 + 1/n
≤ n

∫ 1+1/n

1

dt

t
≤ 1. Now, letting n→∞, we get

L(e) = lim
n→∞

n

∫ 1+1/n

1

dt

t
= 1.

Finally, observe that, for every x > 0,

L(x) = L(eloge x) = (loge x)L(e) = loge x (as L(e) = 1).

4.2 Derivatives of log x, ex and the limit lim
h→0

eh − 1

h

First we shall show that d
dx

(log x) = 1/x for all x > 0. The integrand f(t) = 1/t

is continuous in (1,∞). Hence, Fundamental Theorem of Calculus tells us that

L(x) =
∫ x
1
f(t)dt is differentiable in (1,∞) with L′(x) = f(x) = 1/x for all x > 1.

For x < 1, we can use L(x) = −L(1/x) to arrive at

L′(x) =
d

dx

(
−L

(
1

x

))
chain rule

= − 1

1/x
· d
dx

(
1

x

)
= (−x)

−1

x2
=

1

x

Now we are left with only L′(1). For this, we rewrite L(x) as

L(x) =

∫ x

0.5

dt/t−
∫ 1

0.5

dt/t =

∫ x

0.5

dt/t+ some constant.

Then, continuity of 1/t in [0.5,∞) ensures L is differentiable in (0.5,∞), with

L′(x) = f(x) = 1/x for all x > 0.5. In particular, we have L′(1) = 1.

Next, we shall find the derivative of ex. Observe that, the function h : R →
(0,∞), h(x) = ex is a bijective function with inverse h−1(x) = log x (because y = ex

implies x = log y). To put it in another way, ex is the inverse of the differentiable

function log x and the derivate of log x (which is 1/x) is non-zero for x ∈ (0,∞).

Hence ex is differentiable.
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Differentiating both sides of x = log(ex) w.r.t. x (using chain-rule for the RHS),

1 =
d

dx
(log(ex)) =

1

ex
· d
dx

(ex) =⇒ d

dx
(ex) = ex.

Finally, we have

ex =
d

dx
(ex) = lim

h→0

ex+h − ex

h
= ex lim

h→0

eh − 1

h
=⇒ lim

h→0

eh − 1

h
= 1.

4.3 Alternate ways to define e

Using ax = ex log a we obtain

lim
x→0

ax − 1

x
= lim

x→0

ex log a − 1

x
= log a lim

x→0

ex log a − 1

x log a
= log a,

and d

dx
(ax) =

d

dx
(ex log a) = (ex log a) log a = ax log a.

Hence we can say that

a = e is the unique number for which lim
x→0

ax − 1

x
= 1 and

d

dx
(ax) = ax holds.

Also, notice that

∫ a

1

1

t
dt =

∫ e

1

1

t
dt +

∫ a

e

1

t
dt = 1 +

∫ a

e

1

t
dt tells us

∫ a

1

1

t
dt = 1 if

and only if a = e.
At this point, I can attempt give you a possible answer of the question: Why do

we call loge x to be the natural logarithm of x? One can guess that the derivative
of ax (w.r.t. x) is proportional to itself1. Now, think about guessing that propor-
tionality constant. Well, we might do one thing - set some number as standard and
measure the proportionality constant with respect to that. Hence we seek whether
there is a number a for which that proportionality constant becomes 1. Quite dra-
matically, it turns out that this number is none other than e. Not only that, it is the
unique choice for a which makes both the limit lim

x→0
(ax − 1)/x and the area

∫ a
1

1
x
dx

to be 1. Due to these reasons, in calculus (which comprises of limit, derivatives and
area) we set this number as the standard one. In other words, the number e is the
most natural constant in calculus.

4.4 The Series ex = 1 + x+ x2

2!
+ x3

3!
+ · · ·

Once we know that the derivative of ex is itself, the above series is just the Taylor
series of ex. The error after truncating the series at the n-th term, is of the form
eξnxn/n! where 0 < |ξn| < |x|. We have 0 < eξn ≤ 1 + ex, so this part of the error is
bounded. Hence the conclusion will follow once we show lim

n→∞
xn/n! = 0. To prove

this, consider the series
∑∞

n=1 x
n/n!. By ratio-test, this series converges (for any

real number x), hence the n-th term of the series must tend to 0 as n → ∞. This

completes the proof that ex = 1 + x+ x2

2!
+ x3

3!
+ · · · .

1Watch 3blue1brown’s video at https://youtu.be/m2MIpDrF7Es
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However, the proof above gives us no motivation how a seemingly different series
relates with e. Let me give that motivation now. Observe that,

d

dx

(
1 + x+

x2

2!
+ · · ·+ xn−1

(n− 1)!
+
xn

n!

)
=
(

1 + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!

)
.

So, the derivative of
(

1 +x+
x2

2!
+ · · ·+ xn

n!

)
is almost like itself, with the last term

being erased! Now, what if we continue adding all such terms (making a power
series)? We expect that

d

dx

(
1 + x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ . . .

)
=
(

1 + x+
x2

2!
+ · · ·+ xn−1

(n− 1)!
+ . . .

)
(?)

Since there is no last term, the derivative of the series is just itself. And this is
a property the function ex enjoys! Of course, ex is not the only one having this
property: for every c ∈ R, the function cex has the same property. But, after all,
its natural to ask, is that series related to ex ? And the answer turns out to be
‘yes’, because the series happens to be nothing but the Taylor series expansion for
ex. (We proved that the series converges to ex, for any real number x.)

The reader might get a bit disgusted if I give no explanation for differentiating
the series in (?) term-by-term. Note that the in (?) is a power series (around 0),
which converges for any real number x, as seen by ratio-test. So the radius of
convergence of the power series is R = +∞ and we can differentiate a power series
(around 0) term-by-term within (−R,R). Thus, the term-by-term differentiation
in (?) is justified.
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