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It is difficult to compute n! even for moderately large n, like n = 100. However,

there is a nice approximation for n!, named Stirling’s Approximation, that states

lim
n→∞

n!√
2πe−nnn+1/2

= 1. (∗)

To see how good this approximation is, you can compare f(n) =
√

2πe−nnn+1/2

with n! for n = 5, 10, 20 (and so on). Note that (∗) tells us that n!/f(n) goes

to 1. So, if you consider n! − f(n), you might get disappointed to see that this

difference does not get smaller and smaller. Instead, we should consider the

relative error,
n!− f(n)

n!

which goes to 0 as n increases, as seen from (∗). We shall see a proof of (∗) below,

divided into a number of smaller problems.

Problem 1. Suppose {xn}n≥1 is a sequence such that
∞∑
n=1

|xn+1−xn| converges.

Then lim
n→∞

xn exists.

Solution. Since
∞∑
n=1

|xn+1−xn| converges, so
∞∑
n=1

(xn+1−xn) must converge as well.

This means that lim
N→∞

N−1∑
n=1

(xn+1 − xn) exists, which is same as saying lim
N→∞

xN

exists.

Problem 2. For 0 < x < 1, we have
∣∣∣ log(1 + x)− x+

x2

2

∣∣∣ ≤ x3

3
.

Solution. Fix any x ∈ (0, 1). By Taylor’s theorem, there exists c ∈ (0, x) such

that

f(x) = f(0) + xf ′(0) +
x2

2
f ′′(0) +

x3

3!
f ′′′(c).

Applying it for f(x) = log(1 + x), we get

log(1 + x) = x− x2

2
+
x3

3!

2

(1 + c)3

where 0 < c < x < 1. The conclusion follows immediately from this equation.

Problem 3. Show that lim
n→∞

n!

e−nnn+1/2
exists. We shall denote this limit by C.
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Solution. For n ≥ 1, let us define

xn = log

(
n!

e−nnn+1/2

)
= log n! + n−

(
n+

1

2

)
log n.

First observe that,

xn+1 − xn = log(n+ 1)− 1

2
log

(
1 +

1

n

)
+ 1− (n+ 1) log(n+ 1) + n log n

= −
(
n+

1

2

)
log

(
1 +

1

n

)
+ 1.

Using problem 2, we have

∣∣∣∣log

(
1 +

1

n

)
− 1

n
+

1

2n2

∣∣∣∣ < 1

3n3
. Multiplying this

inequality by n and
1

2
respectively, and then using triangle inequality, we get

∣∣∣∣(n+
1

2

)
log

(
1 +

1

n

)
− 1

∣∣∣∣ ≤ ∣∣∣∣n log

(
1 +

1

n

)
− 1 +

1

2n

∣∣∣∣+

∣∣∣∣12 log

(
1 +

1

n

)
− 1

2n

∣∣∣∣
≤
(
n+

1

2

) ∣∣∣∣log

(
1 +

1

n

)
− 1

n
+

1

2n2

∣∣∣∣+
1

4n2
≤
(
n+

1

2

)
1

3n3
+

1

4n2
<

1

n2
.

Therefore,
∞∑
n=1

|xn+1 − xn| ≤
∞∑
n=1

1

n2
<∞.

Hence, we can use problem 1 to conclude that lim
n→∞

xn exists, say `. Finally, since

x 7→ ex is continuous, the required limit exists, and lim
n→∞

exn = e` =: C.

Problem 4. Let In =

∫ π/2

0

(sinx)n dx for n ≥ 0. Show that,

1. In ≥ In+1 for every n ≥ 0.

2. In =
n− 1

n
In−2 for every n ≥ 2.

3. Find a formula for I2n+1 and I2n.

4. lim
n→∞

In+1

In
= 1.

Solution. The first two are left for the reader (the second one can be shown using

integration by parts). For the third one, we use the last part repetitively.

I2n+1 =
2n

2n+ 1
I2n−1 =

2n

(2n+ 1)

(2n− 2)

(2n− 1)
I2n−3 = · · · = 2n

(2n+ 1)

(2n− 2)

(2n− 1)
· · · 2

3
I1
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and I1 = 1. Similarly,

I2n =
2n− 1

2n
I2n−2 = · · · = (2n− 1)

2n

(2n− 3)

(2n− 2)
· · · 1

2
I0 =

(2n− 1)

2n

(2n− 3)

(2n− 2)
· · · 1

2

π

2
.

For the last one, we observe that for each n ≥ 1,

In ≤ In−1 =
n+ 1

n
In+1 =⇒ n

n+ 1
≤ In+1

In
≤ 1.

Hence, Sandwich theorem applies and gives us the desired limit.

Problem 5. Show that, lim
n→∞

I2n+1

I2n
=
C2

2π
and hence conclude that C =

√
2π.

Proof. From the last problem, we have

I2n+1

I2n
=

(
2n(2n− 2) · · · 2

(2n− 1)(2n− 3) · · · 1

)2
2

π(2n+ 1)
=

(
(2nn!)2

(2n)!

)2
2

π(2n+ 1)
.

Denote g(n) = e−nnn+1/2. Problem 3 tells us that lim
n→∞

n!

g(n)
= C. Therefore,

lim
n→∞

I2n+1

I2n
= lim

n→∞

24n(n!)4

(2n)!2
2

π(2n+ 1)
= lim

n→∞

24ng(n)4

g(2n)2
2C2

π(2n+ 1)

Observe that,
24ng(n)4

g(2n)2
= 24n e−4nn4n+2

e−4n(2n)4n+1
=
n

2
. Hence, the last limit becomes

lim
n→∞

24ng(n)4

g(2n)2
2C2

π(2n+ 1)
= lim

n→∞

nC2

π(2n+ 1)
=
C2

2π
.

Now, the last problem tells us lim
n→∞

I2n+1

I2n
= 1. Therefore, C2 = 2π =⇒ C =

√
2π

(because C ≥ 0). This completes our proof.

− · − · − · −

Any application? Applications of Stirling’s formula can be found in different

parts of Probability theory. For example, it is used in the proof of the de Moivre-

Laplace theorem, which states that the normal distribution may be used as an

approximation to the binomial distribution under certain conditions. It is also

used in study of Random Walks.

See also: What is the purpose of Stirling’s approximation to a factorial? (asked

in math.stackexchange.com).
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