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Example 4.33. The function

f(x) =

{
x/2 + x2 sin(1/x) if x ̸= 0,

0 if x = 0,

is differentiable, but not continuously differentiable, at 0 and f ′(0) = 1/2 > 0.
However, f is not increasing in any neighborhood of 0 since

f ′(x) =
1

2
− cos

(
1

x

)
+ 2x sin

(
1

x

)

is continuous for x ̸= 0 and takes negative values in any neighborhood of 0, so f is
strictly decreasing near those points.

4.5. Taylor’s theorem

If f : (a, b) → R is differentiable on (a, b) and f ′ : (a, b) → R is differentiable, then
we define the second derivative f ′′ : (a, b) → R of f as the derivative of f ′. We
define higher-order derivatives similarly. If f has derivatives f (n) : (a, b) → R of all
orders n ∈ N, then we say that f is infinitely differentiable on (a, b).

Taylor’s theorem gives an approximation for an (n + 1)-times differentiable
function in terms of its Taylor polynomial of degree n.

Definition 4.34. Let f : (a, b) → R and suppose that f has n derivatives f ′, f ′′, . . . f (n) :
(a, b) → R on (a, b). The Taylor polynomial of degree n of f at a < c < b is

Pn(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n.

Equivalently,

Pn(x) =
n∑

k=0

ak(x− c)k, ak =
1

k!
f (k)(c).

We call ak the kth Taylor coefficient of f at c. The computation of the Taylor
polynomials in the following examples are left as an exercise.

Example 4.35. If P (x) is a polynomial of degree n, then Pn(x) = P (x).

Example 4.36. The Taylor polynomial of degree n of ex at x = 0 is

Pn(x) = 1 + x+
1

2!
x2 · · ·+ 1

n!
xn.

Example 4.37. The Taylor polynomial of degree 2n of cosx at x = 0 is

P2n(x) = 1− 1

2!
x2 +

1

4!
x4 − · · ·+ (−1)n

1

(2n)!
x2n.

We also have P2n+1 = P2n.

Example 4.38. The Taylor polynomial of degree 2n+ 1 of sinx at x = 0 is

P2n+1(x) = x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)n

1

(2n+ 1)!
x2n+1.

We also have P2n+2 = P2n+1.
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Example 4.39. The Taylor polynomial of degree n of 1/x at x = 1 is

Pn(x) = 1− (x− 1) + (x− 1)2 − · · ·+ (−1)n(x− 1)n.

Example 4.40. The Taylor polynomial of degree n of log x at x = 1 is

Pn(x) = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − · · ·+ (−1)n+1(x− 1)n.

We write

f(x) = Pn(x) +Rn(x).

where Rn is the error, or remainder, between f and its Taylor polynomial Pn. The
next theorem is one version of Taylor’s theorem, which gives an expression for the
remainder due to Lagrange. It can be regarded as a generalization of the mean
value theorem, which corresponds to the case n = 0.

The proof is a bit tricky, but the essential idea is to subtract a suitable poly-
nomial from the function and apply Rolle’s theorem, just as we proved the mean
value theorem by subtracting a suitable linear function.

Theorem 4.41 (Taylor). Suppose f : (a, b) → R has n + 1 derivatives on (a, b)
and let a < c < b. For every a < x < b, there exists ξ between c and x such that

f(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n +Rn(x)

where

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1.

Proof. Fix x, c ∈ (a, b). For t ∈ (a, b), let

g(t) = f(x)− f(t)− f ′(t)(x− t)− 1

2!
f ′′(t)(x− t)2 − · · ·− 1

n!
f (n)(t)(x− t)n.

Then g(x) = 0 and

g′(t) = − 1

n!
f (n+1)(t)(x− t)n.

Define

h(t) = g(t)−
(
x− t

x− c

)n+1

g(c).

Then h(c) = h(x) = 0, so by Rolle’s theorem, there exists a point ξ between c and
x such that h′(ξ) = 0, which implies that

g′(ξ) + (n+ 1)
(x− ξ)n

(x− c)n+1
g(c) = 0.

It follows from the expression for g′ that

1

n!
f (n+1)(ξ)(x− ξ)n = (n+ 1)

(x− ξ)n

(x− c)n+1
g(c),

and using the expression for g in this equation, we get the result. !
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Note that the remainder term

Rn(x) =
1

(n+ 1)!
f (n+1)(ξ)(x− c)n+1

has the same form as the (n+1)th term in the Taylor polynomial of f , except that
the derivative is evaluated at an (unknown) intermediate point ξ between c and x,
instead of at c.

Example 4.42. Let us prove that

lim
x→0

(
1− cosx

x2

)
=

1

2
.

By Taylor’s theorem,

cosx = 1− 1

2
x2 +

1

4!
(cos ξ)x4

for some ξ between 0 and x. It follows that for x ̸= 0,

1− cosx

x2
− 1

2
= − 1

4!
(cos ξ)x2.

Since | cos ξ| ≤ 1, we get ∣∣∣∣
1− cosx

x2
− 1

2

∣∣∣∣≤
1

4!
x2,

which implies that

lim
x→0

∣∣∣∣
1− cosx

x2
− 1

2

∣∣∣∣= 0.

Note that Taylor’s theorem not only proves the limit, but it also gives an explicit
upper bound for the difference between (1− cosx)/x2 and its limit 1/2.


