Example 4.33. The function

$$
f(x)= \begin{cases}x / 2+x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is differentiable, but not continuously differentiable, at 0 and $f^{\prime}(0)=1 / 2>0$. However, f is not increasing in any neighborhood of 0 since

$$
f^{\prime}(x)=\frac{1}{2}-\cos \left(\frac{1}{x}\right)+2 x \sin \left(\frac{1}{x}\right)
$$

is continuous for $x \neq 0$ and takes negative values in any neighborhood of 0 , so f is strictly decreasing near those points.

4.5. Taylor's theorem

If $f:(a, b) \rightarrow \mathbb{R}$ is differentiable on (a, b) and $f^{\prime}:(a, b) \rightarrow \mathbb{R}$ is differentiable, then we define the second derivative $f^{\prime \prime}:(a, b) \rightarrow \mathbb{R}$ of f as the derivative of f^{\prime}. We define higher-order derivatives similarly. If f has derivatives $f^{(n)}:(a, b) \rightarrow \mathbb{R}$ of all orders $n \in \mathbb{N}$, then we say that f is infinitely differentiable on (a, b).

Taylor's theorem gives an approximation for an $(n+1)$-times differentiable function in terms of its Taylor polynomial of degree n.
Definition 4.34. Let $f:(a, b) \rightarrow \mathbb{R}$ and suppose that f has n derivatives $f^{\prime}, f^{\prime \prime}, \ldots f^{(n)}$: $(a, b) \rightarrow \mathbb{R}$ on (a, b). The Taylor polynomial of degree n of f at $a<c<b$ is

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{1}{2!} f^{\prime \prime}(c)(x-c)^{2}+\cdots+\frac{1}{n!} f^{(n)}(c)(x-c)^{n} .
$$

Equivalently,

$$
P_{n}(x)=\sum_{k=0}^{n} a_{k}(x-c)^{k}, \quad a_{k}=\frac{1}{k!} f^{(k)}(c)
$$

We call a_{k} the k th Taylor coefficient of f at c. The computation of the Taylor polynomials in the following examples are left as an exercise.

Example 4.35. If $P(x)$ is a polynomial of degree n, then $P_{n}(x)=P(x)$.
Example 4.36. The Taylor polynomial of degree n of e^{x} at $x=0$ is

$$
P_{n}(x)=1+x+\frac{1}{2!} x^{2} \cdots+\frac{1}{n!} x^{n}
$$

Example 4.37. The Taylor polynomial of degree $2 n$ of $\cos x$ at $x=0$ is

$$
P_{2 n}(x)=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\cdots+(-1)^{n} \frac{1}{(2 n)!} x^{2 n}
$$

We also have $P_{2 n+1}=P_{2 n}$.
Example 4.38. The Taylor polynomial of degree $2 n+1$ of $\sin x$ at $x=0$ is

$$
P_{2 n+1}(x)=x-\frac{1}{3!} x^{3}+\frac{1}{5!} x^{5}-\cdots+(-1)^{n} \frac{1}{(2 n+1)!} x^{2 n+1} .
$$

We also have $P_{2 n+2}=P_{2 n+1}$.

Example 4.39. The Taylor polynomial of degree n of $1 / x$ at $x=1$ is

$$
P_{n}(x)=1-(x-1)+(x-1)^{2}-\cdots+(-1)^{n}(x-1)^{n} .
$$

Example 4.40. The Taylor polynomial of degree n of $\log x$ at $x=1$ is

$$
P_{n}(x)=(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots+(-1)^{n+1}(x-1)^{n}
$$

We write

$$
f(x)=P_{n}(x)+R_{n}(x) .
$$

where R_{n} is the error, or remainder, between f and its Taylor polynomial P_{n}. The next theorem is one version of Taylor's theorem, which gives an expression for the remainder due to Lagrange. It can be regarded as a generalization of the mean value theorem, which corresponds to the case $n=0$.

The proof is a bit tricky, but the essential idea is to subtract a suitable polynomial from the function and apply Rolle's theorem, just as we proved the mean value theorem by subtracting a suitable linear function.

Theorem 4.41 (Taylor). Suppose $f:(a, b) \rightarrow \mathbb{R}$ has $n+1$ derivatives on (a, b) and let $a<c<b$. For every $a<x<b$, there exists ξ between c and x such that

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{1}{2!} f^{\prime \prime}(c)(x-c)^{2}+\cdots+\frac{1}{n!} f^{(n)}(c)(x-c)^{n}+R_{n}(x)
$$

where

$$
R_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}
$$

Proof. Fix $x, c \in(a, b)$. For $t \in(a, b)$, let

$$
g(t)=f(x)-f(t)-f^{\prime}(t)(x-t)-\frac{1}{2!} f^{\prime \prime}(t)(x-t)^{2}-\cdots-\frac{1}{n!} f^{(n)}(t)(x-t)^{n}
$$

Then $g(x)=0$ and

$$
g^{\prime}(t)=-\frac{1}{n!} f^{(n+1)}(t)(x-t)^{n}
$$

Define

$$
h(t)=g(t)-\left(\frac{x-t}{x-c}\right)^{n+1} g(c)
$$

Then $h(c)=h(x)=0$, so by Rolle's theorem, there exists a point ξ between c and x such that $h^{\prime}(\xi)=0$, which implies that

$$
g^{\prime}(\xi)+(n+1) \frac{(x-\xi)^{n}}{(x-c)^{n+1}} g(c)=0
$$

It follows from the expression for g^{\prime} that

$$
\frac{1}{n!} f^{(n+1)}(\xi)(x-\xi)^{n}=(n+1) \frac{(x-\xi)^{n}}{(x-c)^{n+1}} g(c)
$$

and using the expression for g in this equation, we get the result.

Note that the remainder term

$$
R_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi)(x-c)^{n+1}
$$

has the same form as the $(n+1)$ th term in the Taylor polynomial of f, except that the derivative is evaluated at an (unknown) intermediate point ξ between c and x, instead of at c.

Example 4.42. Let us prove that

$$
\lim _{x \rightarrow 0}\left(\frac{1-\cos x}{x^{2}}\right)=\frac{1}{2} .
$$

By Taylor's theorem,

$$
\cos x=1-\frac{1}{2} x^{2}+\frac{1}{4!}(\cos \xi) x^{4}
$$

for some ξ between 0 and x. It follows that for $x \neq 0$,

$$
\frac{1-\cos x}{x^{2}}-\frac{1}{2}=-\frac{1}{4!}(\cos \xi) x^{2} .
$$

Since $|\cos \xi| \leq 1$, we get

$$
\left|\frac{1-\cos x}{x^{2}}-\frac{1}{2}\right| \leq \frac{1}{4!} x^{2},
$$

which implies that

$$
\lim _{x \rightarrow 0}\left|\frac{1-\cos x}{x^{2}}-\frac{1}{2}\right|=0 .
$$

Note that Taylor's theorem not only proves the limit, but it also gives an explicit upper bound for the difference between $(1-\cos x) / x^{2}$ and its limit $1 / 2$.

