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Example 4.33. The function

) a/242?sin(1/x) ifx #0,
f(x){o ifz =0,

is differentiable, but not continuously differentiable, at 0 and f’(0) = 1/2 > 0.
However, f is not increasing in any neighborhood of 0 since

f(x) = % — cos <glc> + 2z sin <;>

is continuous for z # 0 and takes negative values in any neighborhood of 0, so f is
strictly decreasing near those points.

4.5. Taylor’'s theorem

If f:(a,b) — R is differentiable on (a,b) and f’: (a,b) — R is differentiable, then
we define the second derivative f” : (a,b) — R of f as the derivative of f'. We
define higher-order derivatives similarly. If f has derivatives f() : (a,b) — R of all
orders n € N, then we say that f is infinitely differentiable on (a,b).

Taylor’s theorem gives an approximation for an (n + 1)-times differentiable
function in terms of its Taylor polynomial of degree n.

Definition 4.34. Let f : (a,b) — R and suppose that f has n derivatives f/, f,... f)
(a,b) = R on (a,b). The Taylor polynomial of degree n of f at a < c < b is

Pal@) = F(&) + F ()@ — )+ o /(@)@ = 4+ 2 F(e)w — )"

Equivalently,
- 1
Pa(e) =Y anle =), ax = fP0)
k=0

We call ag the kth Taylor coefficient of f at ¢. The computation of the Taylor
polynomials in the following examples are left as an exercise.

Example 4.35. If P(x) is a polynomial of degree n, then P,(z) = P(z).
Example 4.36. The Taylor polynomial of degree n of e” at x =0 is

1 1
Puzx)=1+z+ 22 - + —a"

2! n!
Example 4.37. The Taylor polynomial of degree 2n of cosx at = 0 is
_ 1 2 1 4 n 1 2n
Py (z)=1-— T + i — 4 (=1 (2n)!m .

We also have Py, 11 = Pay,.

Example 4.38. The Taylor polynomial of degree 2n + 1 of sinx at x =0 is
1

2n+1
@n+ 11"

1 1 "
P2n+1(x) =xr — g"lj?’ + ax5 — e+ (_1)

We also have Po,190 = Pop.
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Example 4.39. The Taylor polynomial of degree n of 1/x at x = 1 is
Pz)=1—(z—1)+(x—-1)* =+ (=1)"(xz - 1)™

Example 4.40. The Taylor polynomial of degree n of logx at z =1 is
1 .
Puzr)=(x—1)—=(z—1)2+ (- 13— 4 (=1)""(z -1)"

We write
f(z) = P,(z) + Ry (x).
where R, is the error, or remainder, between f and its Taylor polynomial P,. The
next theorem is one version of Taylor’s theorem, which gives an expression for the

remainder due to Lagrange. It can be regarded as a generalization of the mean
value theorem, which corresponds to the case n = 0.

The proof is a bit tricky, but the essential idea is to subtract a suitable poly-
nomial from the function and apply Rolle’s theorem, just as we proved the mean
value theorem by subtracting a suitable linear function.

Theorem 4.41 (Taylor). Suppose f : (a,b) — R has n + 1 derivatives on (a,b)
and let a < ¢ < b. For every a < x < b, there exists £ between ¢ and z such that

F@) = J(O) + £ =) + 51" = o+ O — "+ Rala)

where
1

CES AN i

Rn(x) =

Proof. Fix z,c € (a,b). For t € (a,b), let

o) = 1)~ )~ [0 —1) = 3 /@)= 1) == [ @) 1)
Then g(z) = 0 and
g =~ @) 1)
Define
0=~ (25" g0

Then h(c) = h(xz) = 0, so by Rolle’s theorem, there exists a point £ between ¢ and
a such that A'(€) = 0, which implies that

(z ="

It follows from the expression for ¢’ that

(z - "

(x — ¢)ntl g

@@ - 6" = (1) (<)

and using the expression for g in this equation, we get the result. O
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Note that the remainder term
1
Rn - - (n+1) _\n+1
@) = o O =0
has the same form as the (n+ 1)th term in the Taylor polynomial of f, except that
the derivative is evaluated at an (unknown) intermediate point £ between ¢ and z,

instead of at c.

Example 4.42. Let us prove that
i (1 — cos x) 1
lim | —— ) = =.
x—0 {L‘2 2

1 1
cosx =1— §x2 + I(cosé‘):z:4

for some & between 0 and x. It follows that for x # 0,

By Taylor’s theorem,

1—cosz 1

= 5 —E(COS £)a?.
Since |cos¢| < 1, we get
1—cosz 1 < 1,
22 2= a
which implies that

1—cosz 1
lim | ——— —=| =0.
Note that Taylor’s theorem not only proves the limit, but it also gives an explicit

upper bound for the difference between (1 — cosz)/x? and its limit 1/2.




