Exercises on monotone sequences (Solutions)
$2.7 \quad a_{n+1}=a_{n}^{2}, \quad 0<a_{1}<1$.
$0<a_{n+1}<a_{n} \rightarrow$ prove b_{y} induction
$\therefore a_{n}$ is decreasing and bounded below $l y$, so $\lim _{n \rightarrow \infty} a_{n}$ must exist. Let $\lim _{n \rightarrow \infty} a_{n}=l$. Now, $a_{n+1}=a_{n}^{2}$ for all $n \geq 1$. letting $n \rightarrow \infty$ here, we get $l=l^{2} \Rightarrow l=0,1$.
Since $a_{n+1} \leq a_{1} \Rightarrow l \leq a_{1}<1$. So $l=0$.
2.8. $x_{n+1}=x_{n}\left(2-x_{n}\right), \quad 0<x_{1}<1$.

$$
\frac{x_{2}}{x_{1}}=2-x_{1}>1 \quad\left(\because \ll x_{1}<1\right)
$$

claim $0<x_{n}<1$ and $x_{n+1}>x_{n}$ for all $n \geqslant 1$.

$$
\begin{aligned}
& x_{n+1}=2 x_{n}-x_{n}^{2} \\
& \Rightarrow 1-x_{n+1}=\left(1-x_{n}\right)^{2}
\end{aligned}
$$

$a_{n}=1-x_{n} \rightarrow$ then it is same as the prev. problem.
In prev problem, we saw that a_{n} was dec.
So here x_{n} will be inc. and bounded above
So x_{n} converges.
Now find the limit from the recursion.

$$
\begin{aligned}
x_{n+1}= & x_{n}\left(2-x_{n}\right) \xrightarrow{n \rightarrow \infty} \ell=l(2-l) \\
& (l \neq 0 \text { since } \Rightarrow 1=2-l \Rightarrow l=1 . \\
& \text { positive } \theta \text { inc })
\end{aligned}
$$

2.9. $x_{n+1}=\sqrt{2 x_{n}}, n \geq 1, \quad x_{1}=\sqrt{2}$.

- $0<x_{n}<2$ and $x_{n}<x_{n+1}$ for all $n \geqslant 1$
- Hence $\lim _{n \rightarrow \infty} x_{n}$ exists. Call it ℓ.
- $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} \sqrt{2 x_{n}} \Rightarrow l=\sqrt{2 l} \Rightarrow l=2$. $(l \neq 0 \because$ inc and positive)
2.10. $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right), \alpha>0, n \geqslant 1 . \quad x_{1} \geqslant \sqrt{\alpha}$.

By AM-GM, $x_{n} \geqslant \sqrt{\alpha}$ for all $n \geqslant 1$.

$$
x_{n+1} / x_{n}=\frac{1}{2}\left(1+\alpha / x_{n}^{2}\right) \leq 1
$$

$\Rightarrow x_{n}$ is dec. and bounded below by $\sqrt{\alpha}$.
$\Rightarrow x_{n}$ converges. Let $\lim _{n \rightarrow \infty} x_{n}=l$.
Now, $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{\alpha}{x_{n}}\right)^{n \rightarrow \infty} l=\frac{1}{2}\left(l+\frac{\alpha}{l}\right)$

$$
\Rightarrow l= \pm \sqrt{\alpha}
$$

Since $x_{n} \geqslant \sqrt{\alpha}$ for all n, so $l=\sqrt{\alpha}$.
2.11. Define a sequence

$$
\begin{aligned}
& \text { Define a sequence } \\
& x_{n+1}=\frac{\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right), n \geqslant 1, \quad x_{1}=1 .}{a=1}
\end{aligned}
$$

Repent $\left[\begin{array}{l}\text { ANS }+5 / \text { ANS } \\ \text { ANS /2 }\end{array} \quad\right.$ Try with a hand-held calculator.

ANS \rightarrow converges to $\sqrt{5}$
2.12

$$
\begin{aligned}
& \text { 12. } S_{n+1}=\sqrt{\frac{a b^{2}+S_{n}^{2}}{a+1}}, n \geqslant 1, b>a>0 . \quad S_{1}=a . \\
& 0<\frac{S_{n}<b}{(l y} \text { induction) } S_{n+1}=\sqrt{\frac{a b^{2}+S_{n}^{2}}{a+1}}<\sqrt{\frac{a b^{2}+b^{2}}{a+1}}=b .
\end{aligned}
$$

$$
\left(S_{n+1} / S_{n}\right)^{2}=\frac{a}{a+1}\left(\frac{b}{S_{n}}\right)^{2}+\frac{1}{a+1} \geqslant \frac{a}{a+1}+\frac{1}{a+1}=1
$$

$\Rightarrow S_{n+1} \geqslant S_{n}$. So S_{n} is inc and ed a love $l y l$.

Let $l=\lim _{n \rightarrow \infty} S_{n}$.

$$
\begin{aligned}
S_{n+1}^{2}=\frac{a l^{2}+S_{n}^{2}}{a+1} & \underset{(n \rightarrow \infty)}{\Rightarrow} l^{2}=\frac{a b^{2}+l^{2}}{a+1} \\
& \Rightarrow l= \pm b \Rightarrow l=l(\because l \geqslant 0)
\end{aligned}
$$

2.13. (Bolzano-Weierstrass theorem) Suppose x_{n} is bounded. Now x_{n} has a monotone sulsed, say $x_{n_{k}}$, which is also bounded. Hence the sulsed. $x_{n_{k}}$ converges.
2.19 $\left\{x_{n}\right\},\left\{y_{n}\right\}$ both bounded.

Show that $\exists n_{1}<n_{2}<n_{3}<\cdots$ s.t. $\left\lvert\, \begin{array}{lll}y_{1} & y_{2} & \cdots \\ \uparrow & \\ \text { no connection }\end{array}\right.$ $\left\{x_{n_{k}}\right\}$ and $\left\{y_{n_{k}}\right\}$ both cons. $\left\{x_{n}\right\}$ ld $\Rightarrow \exists$ a pulsed $\left\{x_{m_{k}}\right\}_{k \geqslant 1}$ which converges. $\left\{y_{m_{k}}\right\}_{k \geqslant 1} \ell d d \Rightarrow \exists$ a sulsed $\left\{y_{m_{k_{l}}}\right\}_{l \geqslant 1}$ which converges. Call $n_{l}=m_{k_{l}}, l \geqslant 1$.
Then $\left\{y_{n_{l}}\right\}$ converges and $\left\{x_{n_{l}}\right\}$ also converges, being a subsed. of a convergent sequence.

$$
\begin{gathered}
x_{1}, x_{2}, \ldots \\
\text { ld }
\end{gathered} \stackrel{\substack{\text { converges }}}{\Rightarrow} x_{m_{1},}, x_{m_{2}}, \ldots \Rightarrow x_{m_{k_{1}}}, x_{m_{k_{2}}}, \ldots
$$

$2.15 \quad 1,2,3,4,5, \ldots \ldots$
2.16. $1, \frac{1}{2}, 3, \frac{1}{4}, 5, \frac{1}{6}, \ldots$.
\rightarrow conv. Sulsed: $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \cdots$.
2.17.
$\left\{x_{n}\right\}$ is a see. such that every conv. Sulsed. of $\left\{x_{n}\right\}$ converges to l. ExC. 2.4. tells us that this is not sufficient to conclude that $\lim _{n \rightarrow \infty} x_{n}$ exists. However, in this problem, we have another assumption that $\left\{x_{n}\right\}$ ed. Can we tell now that $\lim x_{n}$ exists?

Since all conv. Subsequences converge to l, the whole must also conv to l if it converges at all. Let, if possible, x_{n} do not converge to l.
\checkmark def.
$\exists \varepsilon>0$ st. for any $N \in N, \exists n \geqslant N$ s.t. $\left|x_{n}-\ell\right|>\varepsilon$.
II
$\exists \varepsilon>0$ s.t. \exists a sulsed. $x_{n_{k}}$ that lies ont side $(l-\varepsilon, l+\varepsilon)$.
Now this sulsed $\left\{x_{n_{k}}: k \geqslant 1\right\}$ is $\ell d d$.
II Bolzano-weierstrass
It has a convergent subset, say $\left\{x_{n_{k_{l}}}: l \geqslant 1\right\}$. But that is not possible, because the red. $x_{n_{k}}$ completely lies outside $(l-\varepsilon, l+\varepsilon)$. Contradiction.

