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1. Show that
∞∑
n=1

1

n(n+ 2)(n+ 4)
converges and also find its sum.

2. Evaluate the series:
∞∑
n=1

n+ 1

(n− 1)! + n! + (n+ 1)!
and

∞∑
n=1

1

(n+ 1)
√
n+ n

√
n+ 1

.

3. Evaluate the series:

(a) 1 +
1

2
+

1

42
+

1

23
+

1

44
+

1

25
+

1

46
+ · · · .

(b) 1 +
1

2
+

1

2 · 3
+

1

22 · 3
+

1

22 · 32
+

1

23 · 32
+

1

23 · 33
+ · · · .

4. Suppose that an+2 = an+1 + an for all n ≥ 1 and a1 = 1, a2 = 2. Evaluate the

series
∞∑
n=1

1

anan+2

.

Comment: Note that an is essentially the sequence of Fibonacci numbers.

However, you don’t need any result on Fibonacci numbers to do this problem.

5. Show that
∞∑
n=1

tan−1
( 1

1 + n+ n2

)
converges and also find its sum.

6. Determine whether the series
∞∑
n=1

sin(π
√
n2 + n+ 1) converges or not.

7. Let 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, · · · be the sequence of all positive integers which

do not contain the digit zero. If we denote this sequence by {an}n≥1, show that∑∞
n=1 1/an ≤ 90.

8. Show that the series

1

1 + x
+

2

1 + x2
+

4

1 + x4
+ · · ·+ 2n

1 + x2n
+ · · ·

converges when |x| > 1, and in this case evaluate it.

1



9. If
∞∑
n=1

|xn+1 − xn| converges, show that lim
n→∞

xn exists.

10. Show that for every a < 1,
∞∑
n=1

1

na
diverges. (You may use that

∞∑
n=1

1

n
diverges.)

11. Suppose that
∑

n≥1 |an| converges. Consider the series
∑

n≥1(an + |an|). This

is a series of non-negative terms. Give an upper bound on its partial sum to

show that it converges. Hence conclude that
∑

n≥1 an converges.

12. (a) For any x ∈ R, define x+ = max{x, 0} and x− = max{−x, 0}. Show that

for every x ∈ R, x = x+ − x− and |x| = x+ + x−. (Hint: Split into two

cases as x ≥ 0 or x < 0.)

(b) Show that
∑

n≥1 |an| converges if and only if
∑

n≥1 a
+
n and

∑
n≥1 a

−
n are

convergent.

13. Suppose that an is a sequence that decreases to zero (i.e. an is decreasing and

converges to 0). Show that the ‘alternating’ series
∑∞

n=1(−1)n−1an converges.

Hence conclude that the series
∑∞

n=1(−1)n−1/n converges.

Hint: Consider the sequence of partial sums Sn =
∑n

k=1(−1)k−1ak. Show that

the sequence {S2n}n≥1 is increasing and bounded above by S1 and {S2n+1}n≥1
is decreasing and bounded above by S2. Finally, use S2n+1 − S2n = a2n+1 to

show that these two subsequences converge to the same limit.

14. Suppose that {an}n≥1 is a decreasing sequence of non-negative numbers such

that
∞∑
n=1

an converges. Show that lim
n→∞

nan = 0.

Hint: Let Sn =
∑n

k=1 ak. Give an upper bound on a2n using S2n and Sn. Do

similar thing for a2n+1.

15. Let a0, a1 be any positive real number and define an+1 =
nan + an−1
n+ 1

for all

n ≥ 1. Show that the sequence an converges.

Hint: Give an upper bound on |an+1 − an| and show that
∑∞

n=1 |an+1 − an|
converges.

16. Suppose that {an}n≥1 is a sequence of non-negative numbers such that
∞∑
n=1

an

converges. Then show that
∞∑
n=1

√
an+1an must also converge.
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17. Let a1 = 3 and an+1 = (a2n + 1)/2 for all n ≥ 1. Show that for every n ∈ N,

1

a1 + 1
+

1

a2 + 1
+ · · ·+ 1

an + 1
+

1

an+1 − 1
=

1

2
.

Hence show that
∞∑
n=1

1

an + 1
=

1

2
.

18. For any positive integer n, let 〈n〉 denote the integer closest to
√
n. Evaluate

the series
∞∑
n=1

2〈n〉 + 2−〈n〉

2n
.

Hint: For a fixed k ∈ N, find all n ∈ N which satisfy 〈n〉 = k.

19. Let x0 = a, x1 = b and define

xn+1 =
(

1− 1

2n

)
xn +

1

2n
xn−1

for n ≥ 1. Show that lim
n→∞

xn exists and also find this limit.

20. (a) Start with de Moivre’s theorem: (cos θ + i sin θ)m = (cosmθ + i sinmθ).

Put m = 2n + 1 and θ = kπ
2n+1

and hence obtain a polynomial in cot2 θ

which vanishes when θ = kπ
2n+1

, k = 1, . . . , n.

(b) Using the polynomial in part (a), show that

n∑
k=1

cot2
kπ

2n+ 1
=
n(2n2 − 1)

3
.

(c) Use the inequality sinx < x < tanx for x ∈ (0, π/2), to derive lower and

upper bounds on
∑n

k=1 1/k2 (also, use part (b)). Hence show that

1 +
1

22
+

1

32
+ · · · = π2

6
.
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