Problems on Series

Aditya Ghosh

September 2020

1. Show that $\sum_{n=1}^{\infty} \frac{1}{n(n+2)(n+4)}$ converges and also find its sum.
2. Evaluate the series: $\sum_{n=1}^{\infty} \frac{n+1}{(n-1)!+n!+(n+1)!}$ and $\sum_{n=1}^{\infty} \frac{1}{(n+1) \sqrt{n}+n \sqrt{n+1}}$.
3. Evaluate the series:
(a) $1+\frac{1}{2}+\frac{1}{4^{2}}+\frac{1}{2^{3}}+\frac{1}{4^{4}}+\frac{1}{2^{5}}+\frac{1}{4^{6}}+\cdots$.
(b) $1+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2^{2} \cdot 3}+\frac{1}{2^{2} \cdot 3^{2}}+\frac{1}{2^{3} \cdot 3^{2}}+\frac{1}{2^{3} \cdot 3^{3}}+\cdots$.
4. Suppose that $a_{n+2}=a_{n+1}+a_{n}$ for all $n \geq 1$ and $a_{1}=1, a_{2}=2$. Evaluate the series

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n} a_{n+2}}
$$

Comment: Note that a_{n} is essentially the sequence of Fibonacci numbers. However, you don't need any result on Fibonacci numbers to do this problem.
5. Show that $\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)$ converges and also find its sum.
6. Determine whether the series $\sum_{n=1}^{\infty} \sin \left(\pi \sqrt{n^{2}+n+1}\right)$ converges or not.
7. Let $1,2,3,4,5,6,7,8,9,11,12, \cdots$ be the sequence of all positive integers which do not contain the digit zero. If we denote this sequence by $\left\{a_{n}\right\}_{n \geq 1}$, show that $\sum_{n=1}^{\infty} 1 / a_{n} \leq 90$.
8. Show that the series

$$
\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\cdots+\frac{2^{n}}{1+x^{2^{n}}}+\cdots
$$

converges when $|x|>1$, and in this case evaluate it.
9. If $\sum_{n=1}^{\infty}\left|x_{n+1}-x_{n}\right|$ converges, show that $\lim _{n \rightarrow \infty} x_{n}$ exists.
10. Show that for every $a<1, \sum_{n=1}^{\infty} \frac{1}{n^{a}}$ diverges. (You may use that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.)
11. Suppose that $\sum_{n \geq 1}\left|a_{n}\right|$ converges. Consider the series $\sum_{n \geq 1}\left(a_{n}+\left|a_{n}\right|\right)$. This is a series of non-negative terms. Give an upper bound on its partial sum to show that it converges. Hence conclude that $\sum_{n \geq 1} a_{n}$ converges.
12. (a) For any $x \in \mathbb{R}$, define $x^{+}=\max \{x, 0\}$ and $x^{-}=\max \{-x, 0\}$. Show that for every $x \in \mathbb{R}, x=x^{+}-x^{-}$and $|x|=x^{+}+x^{-}$. (Hint: Split into two cases as $x \geq 0$ or $x<0$.)
(b) Show that $\sum_{n \geq 1}\left|a_{n}\right|$ converges if and only if $\sum_{n \geq 1} a_{n}^{+}$and $\sum_{n \geq 1} a_{n}^{-}$are convergent.
13. Suppose that a_{n} is a sequence that decreases to zero (i.e. a_{n} is decreasing and converges to 0). Show that the 'alternating' series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges. Hence conclude that the series $\sum_{n=1}^{\infty}(-1)^{n-1} / n$ converges.
Hint: Consider the sequence of partial sums $S_{n}=\sum_{k=1}^{n}(-1)^{k-1} a_{k}$. Show that the sequence $\left\{S_{2 n}\right\}_{n \geq 1}$ is increasing and bounded above by S_{1} and $\left\{S_{2 n+1}\right\}_{n \geq 1}$ is decreasing and bounded above by S_{2}. Finally, use $S_{2 n+1}-S_{2 n}=a_{2 n+1}$ to show that these two subsequences converge to the same limit.
14. Suppose that $\left\{a_{n}\right\}_{n \geq 1}$ is a decreasing sequence of non-negative numbers such that $\sum_{n=1}^{\infty} a_{n}$ converges. Show that $\lim _{n \rightarrow \infty} n a_{n}=0$.
Hint: Let $S_{n}=\sum_{k=1}^{n} a_{k}$. Give an upper bound on $a_{2 n}$ using $S_{2 n}$ and S_{n}. Do similar thing for $a_{2 n+1}$.
15. Let a_{0}, a_{1} be any positive real number and define $a_{n+1}=\frac{n a_{n}+a_{n-1}}{n+1}$ for all $n \geq 1$. Show that the sequence a_{n} converges.
Hint: Give an upper bound on $\left|a_{n+1}-a_{n}\right|$ and show that $\sum_{n=1}^{\infty}\left|a_{n+1}-a_{n}\right|$ converges.
16. Suppose that $\left\{a_{n}\right\}_{n \geq 1}$ is a sequence of non-negative numbers such that $\sum_{n=1}^{\infty} a_{n}$ converges. Then show that $\sum_{n=1}^{\infty} \sqrt{a_{n+1} a_{n}}$ must also converge.
17. Let $a_{1}=3$ and $a_{n+1}=\left(a_{n}^{2}+1\right) / 2$ for all $n \geq 1$. Show that for every $n \in \mathbb{N}$,

$$
\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\cdots+\frac{1}{a_{n}+1}+\frac{1}{a_{n+1}-1}=\frac{1}{2} .
$$

Hence show that $\sum_{n=1}^{\infty} \frac{1}{a_{n}+1}=\frac{1}{2}$.
18. For any positive integer n, let $\langle n\rangle$ denote the integer closest to \sqrt{n}. Evaluate the series

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

Hint: For a fixed $k \in \mathbb{N}$, find all $n \in \mathbb{N}$ which satisfy $\langle n\rangle=k$.
19. Let $x_{0}=a, x_{1}=b$ and define

$$
x_{n+1}=\left(1-\frac{1}{2 n}\right) x_{n}+\frac{1}{2 n} x_{n-1}
$$

for $n \geq 1$. Show that $\lim _{n \rightarrow \infty} x_{n}$ exists and also find this limit.
20. (a) Start with de Moivre's theorem: $(\cos \theta+i \sin \theta)^{m}=(\cos m \theta+i \sin m \theta)$.

Put $m=2 n+1$ and $\theta=\frac{k \pi}{2 n+1}$ and hence obtain a polynomial in $\cot ^{2} \theta$ which vanishes when $\theta=\frac{k \pi}{2 n+1}, k=1, \ldots, n$.
(b) Using the polynomial in part (a), show that

$$
\sum_{k=1}^{n} \cot ^{2} \frac{k \pi}{2 n+1}=\frac{n\left(2 n^{2}-1\right)}{3}
$$

(c) Use the inequality $\sin x<x<\tan x$ for $x \in(0, \pi / 2)$, to derive lower and upper bounds on $\sum_{k=1}^{n} 1 / k^{2}$ (also, use part (b)). Hence show that

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}
$$

