A Tale of Rationals and Irrationals

Aditya Ghosh

1. Show that between any two real numbers, there exists a rational number.

Solution. Take any $a, b \in \mathbb{R}$, say $a<b$. We wish to find $m, n \in \mathbb{Z}, n>0$ such that $a<m / n<b$. Since $b-a>0$, there exists $n \in \mathbb{N}$ such that $n(b-a)>1$ or, $n b>n a+1$. Then, we have at least one integer between $n a$ and $n b$, call that m. (In fact, $n a<\lfloor n a\rfloor+1 \leq n a+1<n b$ which tells us that we can take $m=\lfloor n a\rfloor+1$. Therefore, we have $n a<m<n b \Longrightarrow a<m / n<b$.
2. Show that between any two real numbers, there exists an irrational number.

Solution. Take any $a, b \in \mathbb{R}$, say $a<b$. Using the above result, we have a rational number r such that $a-\sqrt{2}<r<b-\sqrt{2}$. Then, the number $r+\sqrt{2}$ is irrational and it lies between a and b.
3. Show that for every $x \in \mathbb{R}$, there exists a sequence of rational numbers that converges to x.

Solution. Fix $x \in \mathbb{R}$. For every $n \in \mathbb{N}$, the interval $(x, x+1 / n)$ contains a rational number (by Problem 1 above), we call it q_{n}. Then, $x<q_{n}<x+1 / n$ holds for all $n \geq 1$. Sandwich theorem applies here and tells us that q_{n} converges to x.
4. Show that for every $x \in \mathbb{R}$, there exists a sequence of irrational numbers that converges to x.
Solution. Fix $x \in \mathbb{R}$. For every $n \in \mathbb{N}$, the interval $(x, x+1 / n)$ contains an irrational number (by Problem 2 above), we call it r_{n}. Then, $x<r_{n}<x+1 / n$ holds for all $n \geq 1$. Sandwich theorem applies here and tells us that r_{n} converges to x.
5. Show that the following function is discontinuous everywhere

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ 1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Solution. Fix $x \in \mathbb{R}$. By Problems 3 and 4 above, there exists a sequence of rationals q_{n} and a sequence of irrationals r_{n} such that both of them converges to x. Observe
that $f\left(q_{n}\right)=0$ and $f\left(r_{n}\right)=1$ for each $n \geq 1$. For f to be continuous at x, we must have $\lim _{n \rightarrow \infty} f\left(q_{n}\right)=f(x)=\lim _{n \rightarrow \infty} f\left(r_{n}\right)$ - which does not hold here. Therefore f is discontinuous at every $x \in \mathbb{R}$.
6. Does there exist a function which is continuous only at $x=0$?

Solution. Yes. Consider the function

$$
f(x)= \begin{cases}0 & \text { if } x \in \mathbb{Q} \\ x & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

For $a \neq 0$, we can show that f is not continuous at $x=a$ (argument is similar to the solution of the last problem). On the other hand, we can show that f is continuous at $x=0$ as follows. Take any sequence x_{n} that converges to 0 . Observe that $|f(x)| \leq|x|$ holds for all $x \in \mathbb{R}$. Therefore, $\left|f\left(x_{n}\right)-f(0)\right|=\left|f\left(x_{n}\right)\right| \leq\left|x_{n}\right|=\left|x_{n}-0\right|$ holds for every $n \geq 1$. Using this, we get that $f\left(x_{n}\right) \rightarrow f(0)$ whenever $x_{n} \rightarrow 0$.
7. Does there exist a function defined on \mathbb{R} which is discontinuous everywhere except at the integers? (i.e. f is continuous at $x=n$ if and only if $n \in \mathbb{Z}$.)
Solution. Yes. Consider the function

$$
f(x)= \begin{cases}\sin \pi x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

First, for $a \notin \mathbb{Z}$ we show that f is not continuous at $x=a$. Take a sequence of rationals r_{n} and a sequence of irrationals s_{n}, both of which converge to a. We have $f\left(r_{n}\right)=\sin \pi r_{n}$ and $f\left(s_{n}\right)=0$ for $n \geq 1$, and $\sin \pi r_{n} \rightarrow \sin \pi a$ (since $t \mapsto \sin t$ is continuous). Now for f to be continuous at $x=a$, we must have $\lim _{n \rightarrow \infty} f\left(r_{n}\right)=$ $\lim _{n \rightarrow \infty} f\left(s_{n}\right)$, implying that $\sin \pi a=0$ which is not possible since $a \notin \mathbb{Z}$.

Next, fix $a \in \mathbb{Z}$. Let x_{n} be any sequence that converges to a. Note that if x_{n} is rational, we have $\left|f\left(x_{n}\right)-f(a)\right|=\left|\sin \pi x_{n}-\sin \pi a\right| \leq \pi\left|x_{n}-a\right|$. And if x_{n} is irrational then $\left|f\left(x_{n}\right)-f(a)\right|=0$. In either case, we have $\left|f\left(x_{n}\right)-f(a)\right| \leq \pi\left|x_{n}-a\right|$ for every $n \geq 1$. Using this, we conclude that $f\left(x_{n}\right) \rightarrow f(a)$ whenever $x_{n} \rightarrow a$.
8. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(r)=c r$ for all $r \in \mathbb{Q}$, where $c=f(1)$. Can you say anything more?

Solution. First observe that $f(n)=n f(1)=c n$ for all $n \in \mathbb{N}$. Next, observe that $f(0)=0$ and $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Using these, we get $f(n)=c n$ for all $n \in \mathbb{Z}$. Next, observe that for each $k \in \mathbb{N}$, we have $f(k x)=k f(x)$ for all $x \in \mathbb{R}$. Now, take any rational number $r=m / n$ where $m, n \in \mathbb{Z}, n>0$. We have $c m=f(m)=f(n r)=n f(r) \Longrightarrow f(r)=c r$. This completes the proof. Without further assumptions, it is hard to tell anything more for f.
9. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(x)=c x$ for all $r \in \mathbb{R}$, where $c=f(1)$.
Solution. We continue from the previous solution. We derived that $f(r)=c r$ for every $r \in \mathbb{Q}$. Now, take any $x \in \mathbb{R}$. There exists a sequence of rationals q_{n} that converges to x. We have $f\left(q_{n}\right)=c q_{n}$ for each $n \geq 1$. Letting $n \rightarrow \infty$ and using the continuity of f at x, we get $f(x)=\lim _{n \rightarrow \infty} f\left(q_{n}\right)=\lim _{n \rightarrow \infty} c q_{n}=c x$. Since this holds for every $x \in \mathbb{R}$, we are done.
10. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x=0$ and satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Show that $f(x)=c x$ for all $r \in \mathbb{R}$, where $c=f(1)$. (Note, f is given to be continuous only at $x=0$. It does not mean that f is discontinuous at other points.)

Solution. We have $f(r)=c r$ for every $r \in \mathbb{Q}$. Now, fix any $x \in \mathbb{R}$. There exists a sequence of rationals q_{n} that converges to x. We have $f\left(q_{n}\right)=c q_{n}$ for each $n \geq 1$. Consider the sequence $r_{n}=q_{n}-x$. Since $r_{n} \rightarrow 0$ as $n \rightarrow \infty$ and f is continuous at $x=0$, we obtain that $f\left(r_{n}\right) \rightarrow f(0)=0$ as $n \rightarrow \infty$. Now, observe that $f(x)=$ $f\left(q_{n}\right)-f\left(q_{n}-x\right)=c q_{n}-f\left(r_{n}\right)$ for every $n \geq 1$. Letting $n \rightarrow \infty$ here, we get

$$
f(x)=\lim _{n \rightarrow \infty}\left(c q_{n}-f\left(r_{n}\right)\right)=\lim _{n \rightarrow \infty} c q_{n}-\lim _{n \rightarrow \infty} f\left(r_{n}\right)=c x-0=c x
$$

This completes the proof.
Alternate Solution: Fix any $x \in \mathbb{R}$ and take any sequence x_{n} that converges to x. Then, $y_{n}=x_{n}-x$ converges to 0 , hence $f\left(y_{n}\right)$ converges to $f(0)=0$. Therefore, for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|f\left(y_{n}\right)-0\right|<\varepsilon$ holds for all $n \geq N$. Then, we have $\left|f\left(x_{n}\right)-f(x)\right|=\left|f\left(x_{n}-x\right)\right|=\left|f\left(y_{n}\right)\right|<\varepsilon$ for every $n \geq N$. Hence $f\left(x_{n}\right)$ converges to $f(x)$. Since x is arbitrary, we conclude that f is continuous everywhere and hence the result in Problem 9 applies here.

Exercises

1. Does there exist a function defined on \mathbb{R} which is discontinuous everywhere except at $x=0,1,2, \ldots, 10$?
2. Define $f(x)=\left\{\begin{array}{ll}x & \text { if } x \in \mathbb{Q} \\ 1-x & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$. Discuss the continuity of f.
3. Let f and g be continuous on the interval $[a, b]$. Suppose that $f(r)=g(r)$ for all rational $r \in[a, b]$. Is it necessary that $f(x)=g(x)$ for every $x \in[a, b]$?
4. Suppose $f:(0, \infty) \rightarrow \mathbb{R}$ satisfies $f(x y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Furthermore, assume that f is continuous on $(0, \infty)$. Find all such functions f.
5. Determine all continuous functions $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following relation $f(x+y)=g(x)+h(y)$ for all $x, y \in \mathbb{R}$.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that satisfies $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbb{R}$ and suppose that $f(x)$ is continuous at $x=0$.
(a) Show that $f(0)=0$ or 1 . What happens if $f(0)=0$?
(b) If $f(0) \neq 0$ then show that $f(x) \neq 0$ for all $x \in \mathbb{R}$. We shall assume $f(0) \neq 0$ in the subsequent parts as well.
(c) Show that f is continuous at every point.
(d) Call $f(1)=c$. Find $f(2), f(-1), f(1 / 2)$ in terms of c. Can you find $f(r)$ for any $r \in \mathbb{Q}$?
(e) Can you find $f(\sqrt{2})$ in terms of c ? Can you find $f(x)$ for any $x \in \mathbb{R}$?
7. Let $g, h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Define $f(x)= \begin{cases}g(x) & \text { if } x \text { is rational, } \\ h(x) & \text { if } x \text { is irrational. }\end{cases}$ Show that $f(x)$ is continuous at exactly those points where g and h are equal.
8. Consider the following function

$$
f(x)= \begin{cases}0 & \text { if } x \text { is irrational, } \\ 1 / q & \text { if } x=p / q \text { where } p \in \mathbb{Z}, q \in \mathbb{N} \text { and } p, q \text { are coprime }\end{cases}
$$

(a) Show that $f(x+n)=f(x)$ holds for every $x \in \mathbb{R}, n \in \mathbb{Z}$. This says that we can concentrate on the behavior of f in $[0,1]$ only.
(b) Show that f is discontinuous at all rational numbers.
(c) Show that f is continuous at all irrational numbers. In view of (a), it is enough to prove this for the irrationals in $(0,1)$ only.

Hints/Answers

1. Yes. One example is the following function: $f(x)=0$ if x is irrational and $x(x-1) \cdots(x-10)$ if x is rational.
2. f is discontinuous everywhere except at $x=1 / 2$.
3. Fix $x \in[a, b]$. Take a sequence of rationals that converges to x.
4. Put $x=e^{a}, y=e^{b}$ and use problem 9 above. Use the function $g(x)=f\left(e^{x}\right)$.
5. Show that $g(x)-g(0)=h(x)-h(0)$ for all x. Call $g(x)-g(0)=k(x)$. Since $f(0)=g(0)+h(0)$, we obtain $f(x+y)-f(0)=k(x)+k(y)$ for all x, y. Now show that $k(x)=f(x)-f(0)$. Hence we arrive at $k(x+y)=k(x)+k(y)$ for all x, y. Now use problem 9 above.
6. Carry out the steps given. You will get that $f(x)=c^{x}$ for all x, where $c=f(1)$.
7. If $g(a) \neq h(a)$ it is easy to show that f is discontinuous at $x=a$ (take two sequences). If $g(a)=h(a)$, you can use the following bound: $|f(x)-f(a)| \leq$ $\max \{|g(x)-g(a)|,|h(x)-h(a)|\}$.
8. Furhter hint for part (c) : There are only finitely many rational numbers in $[0,1]$ whose denominator, in reduced form, is less than any fixed number N. So if we pick N such that $1 / N<\varepsilon$, then for any sequence x_{n} converging to an irrational number r, only finitely many $f\left(x_{n}\right)$'s can be bigger than ε.

The function given here is known as Thomae's function. You can search in Wikipedia to know more about this function.

