
Theorems on Continuity

Aditya Ghosh

July 2019

Question: Does there exist a function f : [0, 1] → [0, 1) which is surjective and

continuous?

Solution: We shall show that there does not exist such function. Let us assume to

the contrary that f is such a function. Now, for any positive integer n, the number

1 − 1/n belongs to [0, 1) which is the range of f , hence there exists xn ∈ [0, 1]

such that f(xn) = 1 − 1/n. Thus, we get a sequence xn in [0, 1] such that f(xn) =

1− 1/n holds for every n ≥ 1. This sequence xn might not converge; but since it is

bounded, it has a convergence subsequence (by Bolzano-Weierstrass theorem). Say

that subsequence is {xnk
}k≥1 and suppose that it converges to c. Since 0 ≤ xnk

≤ 1

for every k ≥ 1, so 0 ≤ c ≤ 1 (this ensures that f is continuous at c). Now, xnk
→ c

and f is continuous, hence f(xnk
) → f(c). But f(xnk

) = 1− 1/nk which converges

to 1 as k →∞. Thus we get f(c) = 1, which is a contradiction. �

One key idea in the above solution is to get hold of a sequence xn such that f(xn)

has a desired property, and then use a convergent subsequence of xn to derive some

contradiction. This idea will be used again and again in this note for proving some

theorems on continuous functions.

Theorem. Suppose that f : [a, b]→ R is a continuous function. Then f must be

bounded.

Proof. Let, if possible, f be unbounded. Without loss of generality, we may assume

that f is unbounded above. Then for every n ∈ N, there exists xn ∈ [a, b] such

that f(xn) > n. Now, xn is bounded, hence it has a convergent subsequence. Say

that subsequence is xnk
which converges to c. Since a ≤ xnk

≤ b for every k ≥ 1,

it follows that a ≤ c ≤ b. Thus, xnk
→ c and f is continuous at c, which implies

that f(xnk
) converges to f(c). This in turn implies that f(xnk

) must be bounded.

But, f(xnk
) > nk for each k ≥ 1 and nk’s are strictly increasing, which means that

f(xnk
) is unbounded1. Thus we arrive at a contradiction. �

1If a sequence is unbounded above, it need not be true that any subsequence of it must also be un-
bounded. But here we have f(xn) > n for every n ≥ 1. This ensures that the subsequence f(xnk ) is also
unbounded.
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The last theorem says that if a function is continuous on a closed bounded

interval, then it must be bounded on that interval. But it does not tell us whether

the function attains a maximum or minimum there. However, it turns out that such

a function indeed attains its extreme values:

Theorem. Suppose that f : [a, b]→ R is a continuous function. Then there exists

c, d ∈ [a, b] such that f(c) ≥ f(x) ≥ f(d) holds for every x ∈ [a, b].

Proof.(Optional) Let us show that f attains a maximum value (the proof for min-

imum will be similar). Consider the set S = {f(x) : a ≤ x ≤ b} (which is just

the range of f). The last theorem shows that S is bounded above, hence S has a

supremum (least upper bound of S). Call u = supS. Now, for every n ∈ N, u− 1/n

is not an upper bound of S, which means that there is member of S which is greater

than u − 1/n. Therefore, there exists xn in [a, b] such that u − 1/n < f(xn) ≤ u.

Therefore, Sandwich theorem tells us that f(xn)→ u as n→∞. Now, xn might not

converge, but it has a convergent subsequence xnk
. Suppose xnk

→ c and it follows

that c ∈ [a, b]. Since f is continuous at c, we get f(xnk
)→ f(c). But earlier we had

f(xn)→ u. Hence, f(c) = u = supS =⇒ f(x) ≤ f(c) for every x ∈ [a, b]. �

The last two theorems can be combined to say the following: if a function is

continuous on a closed bounded interval then not only it must be bounded, but it

also attains a maximum and a minimum inside that interval. This result is known

as the Extreme Value Theorem. This theorem will be crucial for some results on

differentiation and integration that we shall see in due course of time.

Next, we shall explore another property of continuous function. Suppose a kid

measures his height every time he goes to a doctor. On two successive occasions, he

measured his height to be 4 ft 2 inches and 4 ft 4 inches respectively. Since height

increases continuously w.r.t. time, we can surely say that at some point of time,

he was exactly 4 ft 3 inches tall. This is known as the Intermediate Value Property

(IVP). The next theorem tells us that if a function is continuous on a closed bounded

interval then it has this property.

Theorem. Suppose f is a function continuous on [a, b] and k ∈ R such that

f(a) < k < f(b). Then there exists c between a and b such that f(c) = k.

This is known as the Intermediate Value Theorem. In order to prove this theo-

rem, we may assume w.l.o.g. that k = 0. Because, once we prove it for k = 0, we

can apply that to the function g(x) = f(x)− k. The proof for k = 0 is given below.
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Theorem. Suppose f is a function continuous on [a, b] such that f(a) < 0 < f(b).

Then there exists c between a and b such that f(c) = 0.

Proof.(Optional) Consider S = {x : a ≤ x ≤ b and f(x) ≤ 0}. The set S is

bounded above and hence it has a supremum. Let us call c = supS. We shall show

that f(c) = 0. Since a ≤ c ≤ b, it follows that f is continuous at c. Fix any ε > 0.

Then there exists δ > 0 such that f(x) − ε < f(c) < f(x) + ε holds whenever

x ∈ (c− δ, c+ δ). Now, the definition of supremum tells us that the interval (c− δ, c]
contains a member of S, call it x0. And the interval (c, c + δ) does not contain a

member of S, call it y0. We have f(c) < f(x0) + ε ≤ ε and f(c) > f(y0)− ε > −ε.
Therefore, −ε < f(c) < ε. Since ε > 0 is arbitrary, it follows that f(c) = 0. �

Note, in the above theorem we had f(a) < 0 < f(b). The result holds even if

f(a) > 0 > f(b). So we can restate the theorem as: if f is continuous on [a, b] and

f(a) and f(b) have opposite signs, then there exists c ∈ (a, b) such that f(c) = 0.

The last theorem is known as Bolzano’s theorem. There is an alternate proof of

this theorem that essentially does a binary search for finding a root (see section 5.3

in the book ‘Introduction to Real Analysis’ by Bartle and Sherbert).

An important corollary of the extreme value theorem and intermediate value

theorem is the following:

Corollary. A continuous function maps a closed bounded interval into a closed

bounded interval. In other words, if f : [a, b] → R is continuous, then image of f

is [c, d] for some c < d.

Let f : [a, b] → R be a function. We showed that if f is continuous then f has

the intermediate value property (IVP). Now you might ask, is the converse true? It

turns out that the answer is ‘No’. Here is a counter-example: define f(x) = sin(1/x)

for x 6= 0 and f(0) = 0.
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We can show that f is not continuous at 0. But does f have IVP? Look at the

graph above. Take any interval around 0, say[−ε, ε]. Since f oscillates completely

(from −1 to 1) infinitely often, we can show that f attains all the values in [−1, 1].

Thus, the above function f has IVP, although it it not continuous at 0.

Let us now solve a problem making use of the intermediate value property.

Problem. Suppose f is a function with f(0) = f(1). If f has IVP, then show that

there exists c ∈ (0, 1) such that f(c+ 1/2) = f(c).

Proof. Consider the function g(x) = f(x + 1/2) − f(x), 0 ≤ x ≤ 1/2. Clearly g

is continuous. Observe that g(0) = f(1/2) − f(0) and g(1/2) = f(1) − f(1/2) =

f(0) − f(1/2). If g(0) or g(1/2) is zero, then the result follows. Else, g(0) and

g(1) have opposite signs which implies that there exists c ∈ (0, 1/2) such that

g(c) = 0 =⇒ f(c+ 1/2) = f(c). �

Problem. Let f : [0, 1] → [0, 1] be continuous. Show that f has a fixed point in

[0, 1]; that is, there exists x0 ∈ [0, 1] such that f(x0) = x0.

Proof. Consider g(x) = f(x) − x. Since 0 ≤ f(x) ≤ 1 for every x ∈ [0, 1], we have

g(0) ≥ 0 and g(1) ≤ 0. If g(0) or g(1) equals zero then we are through. Else, we

have g(0) > 0 > g(1) and g is continuous on [0, 1], so there exists x0 ∈ (0, 1) such

that g(x0) = 0. �

Problem. Let P (x) be a polynomial with real coefficients and suppose that the

degree of P (x) is odd. Show that the equation P (x) = 0 must have at least one

real root.

Proof. Suppose P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, (an 6= 0). We can assume

w.l.o.g that an = 1. Now, it is easy to see that

lim
x→∞

P (x)

xn
= 1 = lim

x→−∞

P (x)

xn
.

Since n is odd, we can say that P (x) must be positive for some sufficiently large

positive x and P (x) must be negative for some sufficiently large negative x. Thus,

we get a < b such that P (a) < 0 < P (b). Since P (x) is continuous, there exists c

between a, b such that P (c) = 0. �

There are plenty of such problems, some are given as exercises at the end of this

note. Next we shall see another important result that holds for continuous functions.
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Suppose that f : [a, b] → R is continuous. Can we say that f must be monotone?

The answer is clearly ‘No’. Consider another situation: suppose f : [a, b] → R is

continuous and one-one. Can we now conclude that f must be monotone? This can

be understood better by drawing some pictures, trying to make f continuous and

one-one but not monotonic. If you try this yourself, you will get a feeling of why

the next theorem holds.

Theorem. Suppose that f : [a, b] → R is continuous and one-one. Then f must

be strictly monotone.

Proof. Fix any c < d < e in the interval [a, b]. We shall show that either f(c) <

f(d) < f(e) or f(c) > f(d) > f(e) must hold. Let us assume to the contrary that

none of them holds. Then we have four other possibilities: (i) f(c) < f(e) < f(d),

(ii) f(e) < f(c) < f(d), (iii) f(d) < f(e) < f(c), and (iv) f(d) < f(c) < f(e).

If f(c) < f(e) < f(d) (i.e. (i) holds), then IVP tells us that there exists e′ ∈ (c, d)

such that f(e′) = f(e). But e′ 6= e because e′ < d < e. This contradicts that f is

one-one. In a similar spirit, if f(e) < f(c) < f(d) (i.e. (ii) holds), then there exists

c′ ∈ (d, e) such that f(c′) = f(c). But c′ 6= c because c < d < c′. This contradicts

that f is one-one. The other two cases are left for the reader.

Having shown the above fact, we are ready to prove that f is monotone. Take

any x < y in [a, b]. First consider the points a ≤ x < y. The above fact tells us

that either f(a) ≤ f(x) < f(y) or f(a) ≥ f(x) > f(y) holds. Next, consider the

points x < y ≤ b. We get that either f(x) < f(y) ≤ f(b) or f(x) > f(y) ≥ f(b)

holds. Combining these two, we can say that either f(a) ≤ f(x) < f(y) ≤ f(b)

or f(a) ≥ f(x) > f(y) ≥ f(b) must hold. Therefore, if f(a) < f(b), then we can

say that x < y =⇒ f(x) < f(y) for every x, y ∈ [a, b]; and if f(a) > f(b), then

x < y =⇒ f(x) > f(y) for every x, y ∈ [a, b]. This completes the proof. �
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The last theorem is found to be very useful while solving problems. Two such

problems are given below, and many other are included as exercises in the end.

Problem. Find all functions f : R → R which satisfies |f(x) − f(y)| = 3|x − y|
for every x, y ∈ R.

Proof. It is easy to show that f is continuous and one-one. Using this, we can

conclude that f must be strictly monotone (see exercise 16 below). This means

that either f is strictly increasing, or strictly decreasing. Assume that f is strictly

increasing. Then for any x, y we have f(x) > f(y) ⇐⇒ x > y. Hence from the

given equation, we deduce that f(x)− f(y) = 3(x− y) =⇒ f(x)− 3x = f(y)− 3y

for every x, y ∈ R. Set y = 0 to get f(x) = 3x + c for every x ∈ R where c = f(0).

For the case where f is strictly decreasing, we can show that f(x) = −3x+ c for all

x ∈ R. These are the only possibilities for f that satisfies the given equation. �

Problem. Suppose f : R → R is continuous and satisfies fn(x) = (−x) for every

x ∈ R. Here fn denotes f composed with itself n times, e.g. f 2(x) = f(f(x)).

Prove that n must be odd and find all such functions f(x).

Proof. First note that f is one-one. Since f is continuous, f must be monotone. If

f is increasing, then x > y =⇒ f(x) > f(y) =⇒ f 2(x) > f 2(y) =⇒ · · · =⇒
fn(x) > fn(y) =⇒ −x > −y which is a contradiction. Therefore f must be

decreasing.

Next, if n is even (say n = 2k), then we get a similar contradiction: x > y =⇒
f(x) < f(y) =⇒ f 2(x) > f 2(y) =⇒ f 3(x) < f 3(y) =⇒ · · · =⇒ f 2k(x) >

f 2k(y) =⇒ −x > −y (contradiction). Therefore, n must be odd.

Observe another fact that f(−x) = f(fn(x)) = fn(f(x)) = −f(x) for every

x ∈ R. In other words, f is an odd function.

To sum up, we have shown that (i) f is decreasing, (ii) f is odd, (iii) n is odd.

We claim that f(x) = −x. To prove our claim, fix any x ∈ R. If f(x) > −x, then

f 2(x) < f(−x) = −f(x) < x =⇒ f 3(x) > f(x) > −x =⇒ f 4(x) < f(−x) < x

and so on. Eventually we arrive at fn(x) > −x =⇒ −x > −x which is a

contradiction. Similar contradiction arises if f(x) < −x. Hence we conclude that

f(x) = −x for every x ∈ R. �
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Exercises/Problems

1. Let f : I → R be a continuous function. If I is a closed bounded interval, then

we know that f must be bounded. Show that the result fails to hold in each

of the following cases: (a) I is bounded interval but not closed. (b) I is not

bounded. (c) I is not an interval.

2. Let f : [a, b] → R be a continuous function with the property that for every

x ∈ [a, b], there exists y ∈ [a, b] such that |f(y)| ≤ 1
2
|f(x)|. Show that there

exists c ∈ [a, b] such that f(c) = 0.

3. Suppose that f, g : [a, b] → R are continuous and such that f(a) < g(a) and

f(b) > g(b). Show that there exists c ∈ (a, b) such that f(c) = g(c).

4. Suppose that f : [a, b] → R is continuous. Let x1, x2, . . . , xn be any n points

in (a, b). Show that there exists x0 ∈ (a, b) such that

f(x0) =
1

n
(f(x1) + f(x2) + · · ·+ f(xn)) .

5. Prove that the equation (1−x) cosx = sinx has at least one solution in (0, 1).

6. If f : [0, 1] → [0, 1] is a continuous function, then show that there exists

c ∈ [0, 1] such that f(c) = c2.

7. Suppose that f : [0, 1] → [0, 1] is a continuous function with f(0) = 0 and

f(1) = 1. Show that there exists c ∈ (0, 1) such that c2 + (f(c))2 = 1.

8. Suppose that f : [0, 2] → R is continuous and f(0) = f(2). Prove that there

exists a, b ∈ [0, 2] such that b− a = 1 and f(b) = f(a).

9. An athlete runs a distance of 6 km in 30 minutes. Prove that somewhere during

the run he covered a distance of 1 km in exactly 5 minutes.

10. Consider f : R\{0} → R defined by f(x) = 1/x. Is f continuous? Note that

f(−1) < 0 < f(1) and f(x) 6= 0 for any x. Does it contradict the intermediate

value theorem?

11. Let f : R→ R be continuous and periodic with period T > 0. Prove that there

exists x0 such that f(x0 + T/2) = f(x0).
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12. Let f : R→ R be continuous and periodic with period T > 0. Prove that there

exists x0 such that f(x0 + π) = f(x0). Convince yourself that the same result

holds even if we replace π with any other number.

13. Suppose that f and g have the intermediate value property on some closed

bounded interval I. Is it necessary that f + g also has the intermediate value

property on I?

14. Suppose that f : [a, b]→ R is a continuous function that takes rational values

only. What can you say about f?

15. Let f : R → R be a continuous function that satisfies f(q + 1/n) = f(q) for

every q ∈ Q and for every n ∈ N. Show that f must be a constant function.

16. Suppose f : R→ R is continuous and injective. Show that f must be strictly

monotonic.

17. Let f : [a, b]→ [c, d] be a strictly increasing function, where c = f(a), d = f(b).

Is it necessary that f−1 exists?

18. Let f : [a, b] → [c, d] be a continuous and strictly increasing function, where

c = f(a), d = f(b). Show that f−1 exists and is strictly increasing on the

interval [c, d]. Furthermore, show that f−1 is continuous on [c, d].

19. Suppose x1 = tan−1 2 > x2 > x3 > · · · are positive real numbers, satisfying

sin(xn+1 − xn) + 2−(n+1) sinxn sinxn+1 = 0 for every n ≥ 1.

Find an expression for cotxn. Hence show that lim
n→∞

xn =
π

4
.

20. Let f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0be a polynomial with real coefficients,

where n > 0 is even. If an > 0 and a0 < 0, then show that the equation

f(x) = 0 has at least two real roots.

21. Show that there exists a set of 100 consecutive integers of which exactly 19

are primes. (Hint: Do you know that there is a set of 100 consecutive integers

which does not contain any prime?)
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