1. ($5+5$ points) Let $a_{1}, a_{2}, \ldots, a_{n}$ be any n positive real numbers. Calculate the following limits:

$$
\text { (i) } \lim _{x \rightarrow 0}\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x}, \quad \text { (ii) } \lim _{x \rightarrow \infty}\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x} \text {. }
$$

(The answers might involve a_{1}, \ldots, a_{n}, of course!)
Solution. (i) Note that here we have a function $a(x)^{b(x)}$ where $a(x) \rightarrow 1$ (as $x \rightarrow 0$) and $b(x)$ is unbounded, so it might be useful to take log. With this motivation, we consider:

$$
f(x)=\log \left(\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x}\right)=\frac{1}{x} \log \left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)
$$

First we write

$$
\begin{equation*}
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{1}{x} \log \left(1+\frac{a_{1}^{x}-1+a_{2}^{x}-1+\cdots+a_{n}^{x}-1}{n}\right) . \tag{1}
\end{equation*}
$$

Now n is fixed, and we have $\lim _{x \rightarrow 0}\left(a_{k}^{x}-1\right)=0$ for each $k=1, \ldots, n$. Hence

$$
u(x)=\frac{a_{1}^{x}-1+a_{2}^{x}-1+\cdots+a_{n}^{x}-1}{n} \rightarrow 0, \text { as } x \rightarrow 0,
$$

and we know that $\lim _{u \rightarrow 0} \frac{\log (1+u)}{u}=1$, so the limit in (1) reduces to

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{a_{1}^{x}-1+a_{2}^{x}-1+\cdots+a_{n}^{x}-1}{n}\right) & =\frac{1}{n} \sum_{k=1}^{n} \lim _{x \rightarrow 0} \frac{a_{k}^{x}-1}{x} \quad \quad \text { (since } n \text { is fixed) } \\
& =\frac{1}{n} \sum_{k=1}^{n} \log a_{k} \quad \quad \text { (a well-known limit) } \\
& =\log \left(\left(a_{1} \cdots a_{n}\right)^{1 / n}\right) .
\end{aligned}
$$

We have shown that $\lim _{x \rightarrow 0} f(x)=\log \left(\left(a_{1} \cdots a_{n}\right)^{1 / n}\right)$. Now it follows by the continuity of the function $t \mapsto e^{t}$ that the required limit is $\left(a_{1} \cdots a_{n}\right)^{1 / n}$, the geometric mean of a_{1}, \ldots, a_{n}.
(ii) First note that $n^{1 / x} \rightarrow 1$ when $x \rightarrow \infty$, so we can totally ignore the denominator. Let's assume that $\max \left\{a_{1}, \ldots, a_{n}\right\}=a_{m}$. When we take a_{m}^{x} out of the bracket, what remains inside is $1+$ a small quantity. To make this precise, we will give upper and lower bounds and use Sandwich theorem.

With $a_{m}=\max \left\{a_{1}, \ldots, a_{n}\right\}$, we have $a_{m}^{x} \leq \sum_{k=1}^{n} a_{k}^{x} \leq n a_{m}^{x}$ for any $x>0$. Therefore,

$$
\frac{a_{m}}{n^{1 / x}} \leq\left(\frac{\sum_{k=1}^{n} a_{k}^{x}}{n}\right)^{1 / x} \leq a_{m}
$$

Since $n^{1 / x} \rightarrow 1$ as $x \rightarrow \infty$, Sandwich theorem tells us that the desired limit is a_{m}, which is nothing but $\max \left\{a_{1}, \ldots, a_{n}\right\}$.

Remark. You might be aware of the fact that for any $r \neq 0$, we define the r-th power mean of n positive real numbers a_{1}, \ldots, a_{n} as

$$
M_{r}=\left(\frac{a_{1}^{r}+a_{2}^{r}+\cdots+a_{n}^{r}}{n}\right)^{1 / r} .
$$

The above problem gives us the intuition behind why it is customary to define M_{0} to be the geometric mean of the n real numbers, and M_{∞} to be their maximum. We also define $M_{-\infty}$ to be their minimum. With this general definition, we have the result that $M_{r} \leq M_{s}$ for any $-\infty \leq r \leq s \leq \infty$, which is commonly known as the power mean inequality.
2. (5 points) Let $P(x)$ be any polynomial with positive real coefficients. Determine, with proof, the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\lfloor P(x)\rfloor}{P(\lfloor x\rfloor)}
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.
Solution. First observe that if $P(x)$ is a constant polynomial, say c, the limit will obviously be $\lfloor c\rfloor / c$. Let us now assume that $P(x)$ has degree $n>1$.

Note that $P(x)$ is an increasing function of x. To see why, suppose that $P(t)=\sum_{k=0}^{n} a_{k} t^{k}$, and consider any $x<y$. Note that $P(y)-P(x)=\sum_{k=0}^{n} a_{j}\left(y^{k}-x^{k}\right)$, which is positive because each summand is positive. Moreover, we can see that $P(x)>0$ for every $x>0$. Next, we use the bounds $t-1<\lfloor t\rfloor \leq t$ to obtain

$$
\begin{equation*}
\frac{P(x)-1}{P(x)} \leq \frac{P(x)-1}{P(\lfloor x\rfloor)}<\frac{\lfloor P(x)\rfloor}{P(\lfloor x\rfloor)} \leq \frac{P(x)}{P(\lfloor x\rfloor)}<\frac{P(x)}{P(x-1)} . \tag{2}
\end{equation*}
$$

Now if we let $x \rightarrow \infty$, on one side we have

$$
\lim _{x \rightarrow \infty} \frac{P(x)-1}{P(x)}=\lim _{x \rightarrow \infty}\left(1-\frac{1}{\sum_{k=0}^{n} a_{j} x^{n}}\right)=1 .
$$

And on the other side,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{P(x-1)}{P(x)} & =\lim _{x \rightarrow \infty}\left(1-\frac{P(x)-P(x-1)}{P(x)}\right) \\
& =1-\lim _{x \rightarrow \infty} \frac{\text { poly. in } x \text { of degree } \leq n-1}{\text { poly. in } x \text { of degree } n} \\
& =1-\lim _{x \rightarrow \infty} \frac{x^{n-1}\left(b_{n-1}+b_{n-2} / x+b_{n-3} / x^{2}+\cdots+b_{0}\right)}{x^{n}\left(a_{n}+a_{n-1} / x+a_{n-2} / x^{2}+\cdots+a_{0}\right)} \\
& =1 .
\end{aligned}
$$

Therefore both the LHS and RHS of (2) go to 1 as $x \rightarrow \infty$, and hence we can apply Sandwich theorem to conclude that the desired limit (exists and) equals 1.
3. (10 points) Suppose that $f:[1,2] \rightarrow \mathbb{R}$ is a continuous function that satisfies

$$
f(x)=\sum_{n=1}^{\infty} \frac{f\left(x^{1 / n}\right)}{2^{n}}
$$

for every $x \in[1,2]$. Show that f must be a constant function.
Solution. Since f is a continuous function on the closed bounded interval $[1,2]$, we know by the Extreme Value Theorem that f attains a minimum and maximum value, say at $x=a$ and $x=b$, respectively. This implies that

$$
\begin{equation*}
f(a) \leq f(x) \leq f(b) \text { holds for every } x \in[1,2] . \tag{3}
\end{equation*}
$$

Putting $x=a$ in the given property of f we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{f\left(a^{1 / n}\right)}{2^{n}}=f(a)=\sum_{n=1}^{\infty} \frac{f(a)}{2^{n}} \tag{4}
\end{equation*}
$$

Note that (3) tells us that $f\left(a^{1 / n}\right) \geq f(a)$ for each $n \geq 1$. So the above equality would be possible only if

$$
f\left(a^{1 / n}\right)=f(a) \text { for every } n \geq 1
$$

(Otherwise the LHS of (4) would be strictly less than the RHS.) Now if we let $n \rightarrow \infty$, and use the continuity of f, we get

$$
f(a)=\lim _{n \rightarrow \infty} f\left(a^{1 / n}\right)=f\left(\lim _{n \rightarrow \infty} a^{1 / n}\right)=f(1) .
$$

A similar argument holds for $f(b)$ as well (since we have $f\left(b^{1 / n}\right) \leq f(b)$ for each $n \geq 1$), which gives us $f(b)=f(1)$. Thus, the minimum and the maximum values of f on the interval $[1,2]$ have to be equal, which makes f a constant function. It is easy to check that any constant function on $[1,2]$ satisfies the given property.
4. (10 points) Find all values of $\theta>0$ for which the following series converges:

$$
\sum_{n=1}^{\infty}\left(\sqrt[\theta]{n^{\theta}+1}-n \cos \frac{1}{n^{\theta / 2}}\right)^{\theta}
$$

Solution. The key idea here is to write

$$
\begin{equation*}
\left(\sqrt[\theta]{n^{\theta}+1}-n \cos \frac{1}{n^{\theta / 2}}\right)^{\theta}=\left(\sqrt[\theta]{n^{\theta}+1}-n+n-n \cos \frac{1}{n^{\theta / 2}}\right)^{\theta} . \tag{5}
\end{equation*}
$$

Observe that

$$
\sqrt[9]{n^{\theta}+1}-n=n\left(\left(1+1 / n^{\theta}\right)^{1 / \theta}-1\right)=n^{1-\theta} \cdot \frac{\left(1+1 / n^{\theta}\right)^{1 / \theta}-1}{1 / n^{\theta}} .
$$

Now $\theta>0$, so $1 / n^{\theta} \rightarrow 0$ as $n \rightarrow \infty$, and we know that $\lim _{x \rightarrow 1} \frac{x^{\nu}-1^{\nu}}{x-1}=\nu$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sqrt[\theta]{n^{\theta}+1}-n}{n^{1-\theta}}=\frac{1}{\theta} \tag{6}
\end{equation*}
$$

Next, for the second part, we note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n-n \cos \left(n^{-\theta / 2}\right)}{n^{1-\theta}}=\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2} . \tag{7}
\end{equation*}
$$

Informally, (6) tells us that $\left(\sqrt[\theta]{n^{\theta}+1}-n\right) \approx \frac{1}{\theta} \cdot n^{1-\theta}$ and $\left(n-n \cos \left(n^{-\theta / 2}\right)\right) \approx \frac{1}{2} n^{1-\theta}$. Therefore, the given sum should behave similar to $\sum_{n \geq 1} n^{\theta(1-\theta)}$.
To make this idea rigorous, let us fix $\varepsilon>0$, smaller than $\theta / 2$ and $1 / 2$. Invoking (6) and (7) we can say that for all sufficiently large n, say for every $n \geq n_{0}$, the following holds

$$
\left|\frac{\sqrt[\theta]{n^{\theta}+1}-n}{n^{1-\theta}}-\frac{1}{\theta}\right|<\varepsilon, \text { and }\left|\frac{n-n \cos \left(n^{-\theta / 2}\right)}{n^{1-\theta}}-\frac{1}{2}\right|<\varepsilon .
$$

Using triangle inequality, we easily deduce from here that

$$
\left(\frac{1}{\theta}+\frac{1}{2}-2 \varepsilon\right) n^{1-\theta}<\sqrt[\theta]{n^{\theta}+1}-n \cos \left(n^{-\theta / 2}\right)<\left(\frac{1}{\theta}+\frac{1}{2}+2 \varepsilon\right) n^{1-\theta}
$$

for every $n \geq n_{0}$. The above bounds tell us that the given series converges if and only if the series $\sum_{n \geq 1} n^{\theta(1-\theta)}$ converges.

This is due to the following result: If $0<a_{n}<b_{n}$ holds for all sufficiently large n, then
(a) $\sum_{n=1}^{\infty} b_{n}$ convergent implies that $\sum_{n=1}^{\infty} a_{n}$ must also converge.
(b) $\sum_{n=1}^{\infty} a_{n}$ divergent implies that $\sum_{n=1}^{\infty} b_{n}$ must also diverge.

Now it is well-known that the series $\sum_{n \geq 1} n^{-\beta}$ converges if and only if $\beta>1$. Hence $\sum_{n \geq 1} n^{\theta(1-\theta)}$ converges if and only if $\theta(\theta-1)>1$. Simple manipulation shows that this is equivalent to $\theta>(1+\sqrt{5}) / 2$ (since $\theta>0$ is given). Therefore we conclude that the given series converges if and only if $\theta>(1+\sqrt{5}) / 2$.
Remark. The ideas used in this problem are very useful for determining the convergence of a series. For a given series $\sum a_{n}$, where $a_{n}>0$, we wish to compare it with another series $\sum b_{n}$ where b_{n} is supposed to be much more simpler to handle than a_{n}. This comparison can be made rigorous once you can say that $c<a_{n} / b_{n}<C$ holds for all sufficiently large n, for some positive constants c and C. If you only have $a_{n} / b_{n}<C$ then you can only comment that $\sum a_{n}$ converges when $\sum b_{n}$ converges, but not the other way around. If you only have $c<a_{n} / b_{n}$ then you can only say that $\sum a_{n}$ diverges when $\sum b_{n}$ diverges, but not the other way around. These three notions are often denoted as $a_{n}=\Theta\left(b_{n}\right), a_{n}=O\left(b_{n}\right)$, and $a_{n}=\Omega\left(b_{n}\right)$ respectively. You will learn about them later in greater detail.

