
Solutions to Class Test 2 on Calculus Instructor: Aditya Ghosh

1. (5+5 points) Let a1, a2, . . . , an be any n positive real numbers. Calculate the following
limits:

(i) lim
x→0

(
ax1 + ax2 + · · ·+ axn

n

)1/x

, (ii) lim
x→∞

(
ax1 + ax2 + · · ·+ axn

n

)1/x

.

(The answers might involve a1, . . . , an, of course!)

Solution. (i) Note that here we have a function a(x)b(x) where a(x)→ 1 (as x→ 0) and
b(x) is unbounded, so it might be useful to take log. With this motivation, we consider:

f(x) = log

((ax1 + ax2 + · · ·+ axn
n

)1/x)
=

1

x
log

(
ax1 + ax2 + · · ·+ axn

n

)
.

First we write

lim
x→0

f(x) = lim
x→0

1

x
log

(
1 +

ax1 − 1 + ax2 − 1 + · · ·+ axn − 1

n

)
. (1)

Now n is fixed, and we have lim
x→0

(axk − 1) = 0 for each k = 1, . . . , n. Hence

u(x) =
ax1 − 1 + ax2 − 1 + · · ·+ axn − 1

n
→ 0, as x→ 0,

and we know that lim
u→0

log(1 + u)

u
= 1, so the limit in (1) reduces to

lim
x→0

1

x

(
ax1 − 1 + ax2 − 1 + · · ·+ axn − 1

n

)
=

1

n

n∑
k=1

lim
x→0

axk − 1

x
(since n is fixed)

=
1

n

n∑
k=1

log ak (a well-known limit)

= log
(
(a1 · · · an)1/n

)
.

We have shown that lim
x→0

f(x) = log((a1 · · · an)1/n). Now it follows by the continuity
of the function t 7→ et that the required limit is (a1 · · · an)1/n, the geometric mean of
a1, . . . , an.

(ii) First note that n1/x → 1 when x → ∞, so we can totally ignore the denominator.
Let’s assume that max{a1, . . . , an} = am. When we take axm out of the bracket, what
remains inside is 1 + a small quantity. To make this precise, we will give upper and lower
bounds and use Sandwich theorem.

With am = max{a1, . . . , an}, we have axm ≤
∑n

k=1 a
x
k ≤ naxm for any x > 0. Therefore,

am
n1/x

≤
(∑n

k=1 a
x
k

n

)1/x
≤ am.

Since n1/x → 1 as x→∞, Sandwich theorem tells us that the desired limit is am, which
is nothing but max{a1, . . . , an}.
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Remark. You might be aware of the fact that for any r 6= 0, we define the r-th power mean of
n positive real numbers a1, . . . , an as

Mr =
(ar1 + ar2 + · · ·+ arn

n

)1/r
.

The above problem gives us the intuition behind why it is customary to define M0 to be the
geometric mean of the n real numbers, and M∞ to be their maximum. We also define M−∞

to be their minimum. With this general definition, we have the result that Mr ≤ Ms for any
−∞ ≤ r ≤ s ≤ ∞, which is commonly known as the power mean inequality.

2. (5 points) Let P (x) be any polynomial with positive real coefficients. Determine, with
proof, the following limit:

lim
x→∞

bP (x)c
P (bxc)

where bxc denotes the greatest integer less than or equal to x.

Solution. First observe that if P (x) is a constant polynomial, say c, the limit will obviously
be bcc/c. Let us now assume that P (x) has degree n > 1.

Note that P (x) is an increasing function of x. To see why, suppose that P (t) =
∑n

k=0 akt
k,

and consider any x < y. Note that P (y)− P (x) =
∑n

k=0 aj(y
k − xk), which is positive

because each summand is positive. Moreover, we can see that P (x) > 0 for every x > 0.

Next, we use the bounds t− 1 < btc ≤ t to obtain

P (x)− 1

P (x)
≤ P (x)− 1

P (bxc)
<
bP (x)c
P (bxc)

≤ P (x)

P (bxc)
<

P (x)

P (x− 1)
. (2)

Now if we let x→∞, on one side we have

lim
x→∞

P (x)− 1

P (x)
= lim

x→∞

(
1− 1∑n

k=0 ajx
n

)
= 1.

And on the other side,

lim
x→∞

P (x− 1)

P (x)
= lim

x→∞

(
1− P (x)− P (x− 1)

P (x)

)
= 1− lim

x→∞

poly. in x of degree ≤ n− 1

poly. in x of degree n

= 1− lim
x→∞

xn−1 (bn−1 + bn−2/x+ bn−3/x
2 + · · ·+ b0)

xn (an + an−1/x+ an−2/x2 + · · ·+ a0)

= 1.

Therefore both the LHS and RHS of (2) go to 1 as x → ∞, and hence we can apply
Sandwich theorem to conclude that the desired limit (exists and) equals 1.
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3. (10 points) Suppose that f : [1, 2]→ R is a continuous function that satisfies

f(x) =
∞∑
n=1

f(x1/n)

2n

for every x ∈ [1, 2]. Show that f must be a constant function.

Solution. Since f is a continuous function on the closed bounded interval [1, 2], we know
by the Extreme Value Theorem that f attains a minimum and maximum value, say at
x = a and x = b, respectively. This implies that

f(a) ≤ f(x) ≤ f(b) holds for every x ∈ [1, 2]. (3)

Putting x = a in the given property of f we get

∞∑
n=1

f(a1/n)

2n
= f(a) =

∞∑
n=1

f(a)

2n
. (4)

Note that (3) tells us that f(a1/n) ≥ f(a) for each n ≥ 1. So the above equality would
be possible only if

f(a1/n) = f(a) for every n ≥ 1.

(Otherwise the LHS of (4) would be strictly less than the RHS.) Now if we let n → ∞,
and use the continuity of f, we get

f(a) = lim
n→∞

f(a1/n) = f( lim
n→∞

a1/n) = f(1).

A similar argument holds for f(b) as well (since we have f(b1/n) ≤ f(b) for each n ≥ 1),
which gives us f(b) = f(1). Thus, the minimum and the maximum values of f on the
interval [1, 2] have to be equal, which makes f a constant function. It is easy to check
that any constant function on [1, 2] satisfies the given property.

4. (10 points) Find all values of θ > 0 for which the following series converges:

∞∑
n=1

(
θ
√
nθ + 1− n cos 1

nθ/2

)θ
.

Solution. The key idea here is to write(
θ
√
nθ + 1− n cos 1

nθ/2

)θ
=

(
θ
√
nθ + 1− n+ n− n cos 1

nθ/2

)θ
. (5)

Observe that

θ
√
nθ + 1− n = n

(
(1 + 1/nθ)1/θ − 1

)
= n1−θ · (1 + 1/nθ)1/θ − 1

1/nθ
.
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Now θ > 0, so 1/nθ → 0 as n→∞, and we know that lim
x→1

xν − 1ν

x− 1
= ν. Hence

lim
n→∞

θ
√
nθ + 1− n
n1−θ =

1

θ
. (6)

Next, for the second part, we note that

lim
n→∞

n− n cos(n−θ/2)
n1−θ = lim

x→0

1− cosx

x2
=

1

2
. (7)

Informally, (6) tells us that ( θ
√
nθ + 1 − n) ≈ 1

θ
· n1−θ and (n − n cos(n−θ/2)) ≈ 1

2
n1−θ.

Therefore, the given sum should behave similar to
∑

n≥1 n
θ(1−θ).

To make this idea rigorous, let us fix ε > 0, smaller than θ/2 and 1/2. Invoking (6) and
(7) we can say that for all sufficiently large n, say for every n ≥ n0, the following holds∣∣∣∣∣ θ

√
nθ + 1− n
n1−θ − 1

θ

∣∣∣∣∣ < ε, and
∣∣∣∣n− n cos(n−θ/2)n1−θ − 1

2

∣∣∣∣ < ε.

Using triangle inequality, we easily deduce from here that(
1

θ
+

1

2
− 2ε

)
n1−θ <

θ
√
nθ + 1− n cos(n−θ/2) <

(
1

θ
+

1

2
+ 2ε

)
n1−θ

for every n ≥ n0. The above bounds tell us that the given series converges if and only if
the series

∑
n≥1 n

θ(1−θ) converges.

This is due to the following result: If 0 < an < bn holds for all sufficiently large n, then
(a)
∑∞

n=1 bn convergent implies that
∑∞

n=1 an must also converge.
(b)

∑∞
n=1 an divergent implies that

∑∞
n=1 bn must also diverge.

Now it is well-known that the series
∑

n≥1 n
−β converges if and only if β > 1. Hence∑

n≥1 n
θ(1−θ) converges if and only if θ(θ − 1) > 1. Simple manipulation shows that this

is equivalent to θ > (1 +
√
5)/2 (since θ > 0 is given). Therefore we conclude that the

given series converges if and only if θ > (1 +
√
5)/2.

Remark. The ideas used in this problem are very useful for determining the convergence of
a series. For a given series

∑
an, where an > 0, we wish to compare it with another series∑

bn where bn is supposed to be much more simpler to handle than an. This comparison can be
made rigorous once you can say that c < an/bn < C holds for all sufficiently large n, for some
positive constants c and C. If you only have an/bn < C then you can only comment that

∑
an

converges when
∑

bn converges, but not the other way around. If you only have c < an/bn then
you can only say that

∑
an diverges when

∑
bn diverges, but not the other way around. These

three notions are often denoted as an = Θ(bn), an = O(bn), and an = Ω(bn) respectively. You
will learn about them later in greater detail.
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