Ramanujan School of Mathematics

Class Test 2 on Calculus

Time allotted: 1.5 hours
Total points: 35

Attempt all the questions. You can use any result discussed in the class, but you have to state it properly. Since it is a 'take-home' exam, I can only request you to give the test honestly and abide by the time limit. Do not cheat to yourself. All the best!

1. ($5+5$ points) Let $a_{1}, a_{2}, \ldots, a_{n}$ be any n positive real numbers. Calculate the following limits:
(i) $\lim _{x \rightarrow 0}\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x}$,
(ii) $\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x}$.
(The answers might involve a_{1}, \ldots, a_{n}, of course!)
2. (5 points) Let $P(x)$ be any polynomial with positive real coefficients. Determine, with proof, the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\lfloor P(x)\rfloor}{P(\lfloor x\rfloor)}
$$

where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to x.
3. (10 points) Suppose that $f:[1,2] \rightarrow \mathbb{R}$ is a continuous function that satisfies

$$
f(x)=\sum_{n=1}^{\infty} \frac{f\left(x^{1 / n}\right)}{2^{n}}
$$

for every $x \in[1,2]$. Show that f must be a constant function.
4. (10 points) Find all values of $\theta>0$ for which the following series converges:

$$
\sum_{n=1}^{\infty}\left(\sqrt[\theta]{n^{\theta}+1}-n \cos \frac{1}{n^{\theta / 2}}\right)^{\theta} .
$$

(You may use this result: $\sum_{n=1}^{\infty} n^{-\beta}$ converges iff $\beta>1$. You need not prove it here.)

