Fermat's theorem and the Mean Value Theorems
 Aditya Ghosh

Last updated: Dec 01, 2020

1. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has a local maximum at $x=c$, where $c \in(a, b)$. Is it necessary that $f^{\prime}(c)=0$?
2. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has a local maximum at $x=c$, where $c \in[a, b]$. Assume that f is differentiable at $x=c$. Is it necessary that $f^{\prime}(c)=0$?
3. (Fermat's Theorem) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ has a local maximum (or minimum) at $x=c$, where $c \in(a, b)$. Assume that f is differentiable at $x=c$. Show that $f^{\prime}(c)$ must be equal to zero.
(Note: It is enough to show it only for the case of local maximum. If f has a local minimum at $x=c$, then we can just apply that result to $-f$.)
4. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at $x=c$, where $c \in(a, b)$. If $f^{\prime}(c)=0$, is it necessary that f has a local maximum/minimum at $x=c$?
5. (Rolle's Theorem) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b), and $f(a)=f(b)$. Prove that there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.
6. Show that Rolle's theorem fails to hold if f is not continuous at one of endpoints (a or b).
7. (Lagrange's Mean Value Theorem) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

8. Let f be continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b)=0$. Prove that for any $\beta \in \mathbb{R}$, there exists some $c \in(a, b)$ such that $f^{\prime}(c)+\beta \cdot f(c)=0$.
9. Let f, g be continuous on $[a, b]$, differentiable on (a, b) and $f(a)=f(b)=0$. Show that there exists $c \in(a, b)$ such that $g^{\prime}(x) f(x)+f^{\prime}(x)=0$.
10. Let f be continuous on $[0, \pi]$, differentiable on $(0, \pi)$. Show that there exists $c \in(0, \pi)$ such that $f^{\prime}(c) \sin c+f(c) \cos c=0$.
11. Assume that f is continuous on $[a, b]$, differentiable on (a, b), where $0<a<b$, and suppose that $b f(a)=a f(b)$. Prove that there exists $x_{0} \in(a, b)$ such that $x_{0} f^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
12. Suppose that f is continuous on $[a, b]$, differentiable on (a, b), and suppose that $f(b)^{2}-$ $f(a)^{2}=b^{2}-a^{2}$. Prove that the equation $f^{\prime}(x) f(x)=x$ has at least one root in (a, b).
13. Let f and g be continuous and never vanishing on $[a, b]$ and differentiable on (a, b). Prove that if $f(a) g(b)=f(b) g(a)$ then there is $x_{0} \in(a, b)$ such that

$$
\frac{f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)}=\frac{g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)} .
$$

14. Assume that $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers such that

$$
a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots+\frac{a_{n}}{n+1}=0 .
$$

Show that $P(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ has at least one root in $(0,1)$.
15. Let $P(x)$ be a polynomial with real coefficients and degree $n \geq 2$. Prove that if all roots of $P(x)$ are real, then all roots of $P^{\prime}(x)$ are also real.
16. Let f be continuous on $[0,2]$ and twice differentiable on $(0,2)$. If $f(x)=x$ holds for $x=0,1$ and 2 , then show that there exists $x_{0} \in(0,2)$ such that $f^{\prime \prime}\left(x_{0}\right)=0$.
17. Let $n>1$ be an integer, and let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function, which is n-times differentiable on (a, b). If the graph of $f(x)$ has $n+1$ collinear points, then prove that there exists $c \in(a, b)$ such that $f^{(n)}(c)=0$.
[Here $f^{(n)}(c)$ denotes the n-th derivative of $f(x)$, evaluated at $x=c$.]
18. Let $f, g:[0,1] \rightarrow \mathbb{R}$ such that $f(0)=g(0)$ and $f^{\prime}(x)>g^{\prime}(x)$ for all $x \in(0,1)$. Show that $f(x)>g(x)$ must hold for all $x \in(0,1]$.
19. Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}(x)>0$ for every $x \in(a, b)$, prove that f must be strictly increasing on $[a, b]$.
20. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function, with positive second derivative. Prove that, $f\left(x+f^{\prime}(x)\right) \geq f(x)$ for every $x \in \mathbb{R}$.
21. Show that the equation $3^{x}+4^{x}+5^{x}=6^{x}$ has exactly one real root.
22. For non-zero a_{1}, \ldots, a_{n} and for distinct $\theta_{1}, \ldots, \theta_{n}$, show that the equation

$$
a_{1} x^{\theta_{1}}+a_{2} x^{\theta_{2}}+\cdots+a_{n} x^{\theta_{n}}=0
$$

has at most $n-1$ roots for $x \in(0, \infty)$.
23. (Cauchy's MVT) Let f, g be continuous on $[a, b]$, differentiable on (a, b). Prove that there exists $c \in(a, b)$ such that $(f(b)-f(a)) \cdot g^{\prime}(c)=(g(b)-g(a)) \cdot f^{\prime}(c)$.

Comment: If we also assume that $g^{\prime}(x) \neq 0$ for every $x \in(a, b)$, then it rearranges to the following:

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

24. Suppose that f is continuous on $[a, b]$, differentiable on (a, b), where $0<a<b$. Prove that there exists $c_{1}, c_{2} \in(a, b)$ such that

$$
\frac{f^{\prime}\left(c_{2}\right)}{a+b}=\frac{f^{\prime}\left(c_{1}\right)}{2 c_{1}} .
$$

25. Let f be continuous on $[a, b]$, differentiable on (a, b), where $a>0$. Show that there exists $c \in(a, b)$ such that

$$
\frac{b f(a)-a f(b)}{b-a}=f(c)-c f^{\prime}(c)
$$

26. Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on (a, b), where $b-a \geq \pi$. Prove that there exists $x_{0} \in(a, b)$ such that $f^{\prime}\left(x_{0}\right)<1+f\left(x_{0}\right)^{2}$.
27. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous on $[a, b]$, differentiable on (a, b), and satisfies $f(a)=a, f(b)=b$. Show that there exist $c, d \in(a, b)$ such that $c \neq d$ and $f^{\prime}(c) f^{\prime}(d)=1$.
28. Let $f:(-1,1) \rightarrow \mathbb{R}$ be a twice differentiable function. Suppose that $f(1 / n)=1$ holds for every $n \in \mathbb{N}$. Prove that $f^{\prime}(0)=0$. Furthermore, show that $f^{\prime \prime}(0)=0$.
29. Given that, $f(x)=8 x^{3}+3 x$. Find the value of $\lim _{x \rightarrow \infty} \frac{f^{-1}(8 x)-f^{-1}(x)}{x^{1 / 3}}$.
30. Suppose that $\lim _{x \rightarrow \infty} f^{\prime}(x)=\infty$. Does this imply that $f(x)$ is unbounded?
31. Let P be a polynomial with real coefficients. Let the leading coefficient be a (where $a>0$) and the degree be b. Show that,

$$
\lim _{n \rightarrow \infty}\left(P(n+1)^{1 / b}-P(n)^{1 / b}\right)=a^{1 / b} .
$$

32. Suppose that f is twice differentiable on (a, b) with positive second derivative. Prove that for any $x, y \in[a, b]$ and any $\lambda \in[0,1]$, it holds that

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

