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1. Suppose that f : [a, b]→ R has a local maximum at x = c, where c ∈ (a, b). Is it necessary

that f ′(c) = 0?

2. Suppose that f : [a, b]→ R has a local maximum at x = c, where c ∈ [a, b]. Assume that

f is differentiable at x = c. Is it necessary that f ′(c) = 0?

3. (Fermat’s Theorem) Suppose that f : [a, b] → R has a local maximum (or minimum) at

x = c, where c ∈ (a, b). Assume that f is differentiable at x = c. Show that f ′(c) must be

equal to zero.

(Note: It is enough to show it only for the case of local maximum. If f has a local

minimum at x = c, then we can just apply that result to −f .)

4. Suppose that f : [a, b] → R is differentiable at x = c, where c ∈ (a, b). If f ′(c) = 0, is it

necessary that f has a local maximum/minimum at x = c?

5. (Rolle’s Theorem) Suppose that f : [a, b] → R is continuous on [a, b], differentiable on

(a, b), and f(a) = f(b). Prove that there exists c ∈ (a, b) such that f ′(c) = 0.

6. Show that Rolle’s theorem fails to hold if f is not continuous at one of endpoints (a or b).

7. (Lagrange’s Mean Value Theorem) Suppose that f : [a, b] → R is continuous on [a, b],

differentiable on (a, b). Prove that there exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

8. Let f be continuous on [a, b], differentiable on (a, b) and f(a) = f(b) = 0. Prove that for

any β ∈ R, there exists some c ∈ (a, b) such that f ′(c) + β · f(c) = 0.

9. Let f, g be continuous on [a, b], differentiable on (a, b) and f(a) = f(b) = 0. Show that

there exists c ∈ (a, b) such that g′(x)f(x) + f ′(x) = 0.

10. Let f be continuous on [0, π], differentiable on (0, π). Show that there exists c ∈ (0, π)

such that f ′(c) sin c+ f(c) cos c = 0.

11. Assume that f is continuous on [a, b], differentiable on (a, b), where 0 < a < b, and suppose

that bf(a) = af(b). Prove that there exists x0 ∈ (a, b) such that x0f
′(x0) = f(x0).
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12. Suppose that f is continuous on [a, b], differentiable on (a, b), and suppose that f(b)2 −
f(a)2 = b2 − a2. Prove that the equation f ′(x)f(x) = x has at least one root in (a, b).

13. Let f and g be continuous and never vanishing on [a, b] and differentiable on (a, b). Prove

that if f(a)g(b) = f(b)g(a) then there is x0 ∈ (a, b) such that

f ′(x0)

f(x0)
=
g′(x0)

g(x0)
.

14. Assume that a0, a1, . . . , an are real numbers such that

a0 +
a1
2

+
a2
3

+ · · ·+ an
n+ 1

= 0.

Show that P (x) = a0 + a1x+ · · ·+ anx
n has at least one root in (0, 1).

15. Let P (x) be a polynomial with real coefficients and degree n ≥ 2. Prove that if all roots

of P (x) are real, then all roots of P ′(x) are also real.

16. Let f be continuous on [0, 2] and twice differentiable on (0, 2). If f(x) = x holds for

x = 0, 1 and 2, then show that there exists x0 ∈ (0, 2) such that f ′′(x0) = 0.

17. Let n > 1 be an integer, and let f : [a, b]→ R be a continuous function, which is n-times

differentiable on (a, b). If the graph of f(x) has n + 1 collinear points, then prove that

there exists c ∈ (a, b) such that f (n)(c) = 0.

[Here f (n)(c) denotes the n-th derivative of f(x), evaluated at x = c.]

18. Let f, g : [0, 1]→ R such that f(0) = g(0) and f ′(x) > g′(x) for all x ∈ (0, 1). Show that

f(x) > g(x) must hold for all x ∈ (0, 1].

19. Suppose that f is continuous on [a, b] and differentiable on (a, b). If f ′(x) > 0 for every

x ∈ (a, b), prove that f must be strictly increasing on [a, b].

20. Let f : R → R be a twice differentiable function, with positive second derivative. Prove

that, f(x+ f ′(x)) ≥ f(x) for every x ∈ R.

21. Show that the equation 3x + 4x + 5x = 6x has exactly one real root.

22. For non-zero a1, . . . , an and for distinct θ1, . . . , θn, show that the equation

a1x
θ1 + a2x

θ2 + · · ·+ anx
θn = 0

has at most n− 1 roots for x ∈ (0,∞).
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23. (Cauchy’s MVT ) Let f, g be continuous on [a, b], differentiable on (a, b). Prove that there

exists c ∈ (a, b) such that (f(b)− f(a)) · g′(c) = (g(b)− g(a)) · f ′(c).

Comment: If we also assume that g′(x) 6= 0 for every x ∈ (a, b), then it rearranges to the

following:
f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

24. Suppose that f is continuous on [a, b], differentiable on (a, b), where 0 < a < b. Prove

that there exists c1, c2 ∈ (a, b) such that

f ′(c2)

a+ b
=
f ′(c1)

2c1
.

25. Let f be continuous on [a, b], differentiable on (a, b), where a > 0. Show that there exists

c ∈ (a, b) such that
bf(a)− af(b)

b− a
= f(c)− cf ′(c).

26. Suppose that f : [a, b] → R is continuous on [a, b] and differentiable on (a, b), where

b− a ≥ π. Prove that there exists x0 ∈ (a, b) such that f ′(x0) < 1 + f(x0)
2.

27. Suppose that f : [a, b]→ [a, b] is continuous on [a, b], differentiable on (a, b), and satisfies

f(a) = a, f(b) = b. Show that there exist c, d ∈ (a, b) such that c 6= d and f ′(c)f ′(d) = 1.

28. Let f : (−1, 1)→ R be a twice differentiable function. Suppose that f(1/n) = 1 holds for

every n ∈ N. Prove that f ′(0) = 0. Furthermore, show that f ′′(0) = 0.

29. Given that, f(x) = 8x3 + 3x. Find the value of lim
x→∞

f−1(8x)− f−1(x)

x1/3
.

30. Suppose that lim
x→∞

f ′(x) =∞. Does this imply that f(x) is unbounded?

31. Let P be a polynomial with real coefficients. Let the leading coefficient be a (where a > 0)

and the degree be b. Show that,

lim
n→∞

(
P (n+ 1)1/b − P (n)1/b

)
= a1/b.

32. Suppose that f is twice differentiable on (a, b) with positive second derivative. Prove that

for any x, y ∈ [a, b] and any λ ∈ [0, 1], it holds that

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).
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Solutions

1. No, because f might not be differentiable at c. Example: f : [−1, 1] → R, f(x) = −|x|.
f has a local maximum at 0, but f ′(0) does not exist.

2. No. For example, take f : [0, 1] → R, f(x) = x has a local maximum at x = 1, but

f ′(1) = 1. (Note, here f ′(1) is defined as the left-hand derivative, because f is not defined

on the right side of x = 1.)

3. Let f : [a, b]→ R have a local maximum at x = c, where c ∈ (a, b), and f ′(c) exists. From

definition of local maximum, there exists δ > 0 such that f(x) ≤ f(c) holds for every

x ∈ (c− δ, c+ δ). So, for every x ∈ (c− δ, c), we have
f(x)− f(c)

x− c
≥ 0, which implies that

f ′(c) = lim
x→c−

f(x)− f(c)

x− c
≥ 0.

On the other hand, for every x ∈ (c, c+ δ), we have
f(x)− f(c)

x− c
≤ 0, which implies that

f ′(c) = lim
x→c+

f(x)− f(c)

x− c
≤ 0.

Combining the above two, we conclude that f ′(c) = 0.

4. No. For example, take f : [−1, 1] → R, f(x) = x3. f does not have a local maximum or

a local minimum at x = 0 (can you see why?), although f ′(0) = 0.

5. Since f is continuous on [a, b], the Extreme Value Theorem tells us that f attains a

maximum and a minimum value inside the interval [a, b]. Suppose f attains its maximum

at c1 and its minimum at c2. If c1 lies inside (a, b), then we can apply Fermat’s theorem

to conclude that f ′(c1) = 0. Similarly, if c2 lies inside (a, b), then we can conclude that

f ′(c2) = 0. If none among c1, c2 lies inside (a, b) then c1, c2 are essentially the endpoints.

In this case, the maximum of f coincides with its minimum (since f(a) = f(b)), hence f

must be constant throughout [a, b]. Thus, we conclude that in all the cases, there exists

c ∈ (a, b) such that f ′(c) = 0.

6. Take [a, b] = [0, 1] and define f(x) = x for 0 ≤ x < 1 and set f(1) = 0.

7. I usually illustrate the derivation of Lagrange’s MVT using a picture like Figure 1. If we

tilt our head and view the picture in such a way that the blue lines look like the horizontal

and the vertical axis, then we see that we can apply Rolle’s theorem in that picture to

conclude that at some point on the curve, the tangent should be parallel to the blue x-axis.

Then, tilting our head back to the old position, we can see that what we argued just now,
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essentially means that at some point on the curve, the tangent should be parallel to the

blue line joining (a, f(a)) and (b, f(b)).

Figure 1: Deriving LMVT from Rolle’s theorem

If you want a more mathematical proof, just subtract from f(x) the equation of the blue

line joining (a, f(a)) and (b, f(b)) and apply Rolle’s theorem to that new function. To be

precise, apply Rolle’s theorem to the function

g(x) = f(x)− `(x) = f(x)−
(
f(a) +

f(b)− f(a)

b− a
(x− a)

)
on the interval [a, b].

8. Apply Rolle’s theorem to h(x) = eβxf(x).

A stupid-but-useful method for such problems:

We wish to apply MVT or Rolle’s theorem on a special function h(·) such that h′(c) gives

the desired expression. A similar idea appears in the study of first order linear differential

equations. Here we want f ′(c) + βf(c) = 0 for some c. Let us instead pretend that it

holds for all c, and try to figure out what that means. Writing y = f(x) (for simplicity),

y′ + βy = 0 =⇒ y′/y = −β

=⇒ log y = −βx+ c (by integration)

=⇒ y = e−βx+c =⇒ yeβx = constant.

Once we arrived at eβxf(x) = constant, be assured that this is the required function (on

which we need to apply Rolle’s theorem/MVT).

Note, the above calculation is just a part of our rough work. The solution always starts

with saying that “Let us consider the function h(x) = eβxf(x) . . . ”.

Though this method looks stupid, I found that it often helps, at least to get a function to

start with. Once you learn the motivation behind a similar trick used to solve first order

linear differential equations, you will understand why this method works.
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9. (Rough work: Here we have g′(x)y + y′ = 0. Solving this, we get y = c · e−g(x) i.e.

eg(x)f(x) = constant.) Consider h(x) = eg(x)f(x). Apply Rolle’s theorem to this function

on the interval [a, b].

10. Apply Rolle’s theorem to h(x) = f(x) sinx. (Even if you did not figure it out using the

stupid method, I urge you to do that, just for the sake of illustration.)

11. Apply Rolle’s theorem to h(x) = f(x)/x. This is somewhat evident from the given con-

dition (which can be rewritten as: f(a)/a = f(b)/b).

12. Apply Rolle’s theorem to h(x) = f(x)2 − x2.

13. Apply Rolle’s theorem to h(x) = f(x)/g(x).

14. Consider the function

Q(x) = a0x+ a1
x2

2
+ · · ·+ an

xn

n+ 1
,

which is actually
∫ x
0
P (x)dx. Observe that P (x) = Q′(x) and we are given that Q(0) =

Q(1) = 0. We get the desired result by applying Rolle’s theorem to Q(x).

15. Let P (x) = a(x − r1)c1(x − r2)c2 · · · (x − rk)ck where r1, r2, . . . , rk are the distinct roots

of P, with multiplicities c1, c2, . . . , ck respectively. Here c1, c2, . . . , ck are natural numbers,

which sum up to n, the degree of P . Observe that,

(i) In each (ri, ri+1) there is a root of P ′(x), in light of Rolle’s theorem.

(ii) The root ri of P (x) is also a root of P ′(x), with multiplicity ci − 1.

Thus, the number of roots of P ′(x), counted with multiplicities, is at least

(k − 1)︸ ︷︷ ︸
coming from (i)

+
k∑
j=1

(cj − 1)︸ ︷︷ ︸
coming from (ii)

= k − 1 + n− k = n− 1.

Since P ′(x) cannot have more than n − 1 roots, we conclude that all the roots of P ′(x)

are real. (Comment: here we should have used ‘zero(s)’ in place of ‘root(s)’.)

16. Applying LMVT to f on [0, 1] and on [1, 2], we get c1 ∈ (0, 1) and c2 ∈ (1, 2) such that

f ′(c1) =
f(1)− f(0)

1− 0
= 1, f ′(c2) =

f(2)− f(1)

2− 1
= 1.

Now we apply Rolle’s theorem to f ′, on the interval [c1, c2], to get the desired x0.
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17. Call those collinear points to be (xi, yi), 1 ≤ i ≤ n + 1. Now, for each 1 ≤ i ≤ n, apply

LMVT to f on the interval [xi, xi+1] to get one ci ∈ (xi, xi+1) such that f ′(c1) = f ′(c2) =

· · · = f ′(cn) = slope of the line that contains those n + 1 points. Next, apply Rolle’s

theorem on f ′ to get hold of f ′′(d1) = f ′′(d2) = · · · = f ′′(dn−1) = 0. Now apply Rolle’s

theorem on f ′′ . . . I think you got the idea.

18. Let, if possible, f(b) ≤ g(b) for some 0 < b ≤ 1. Then, applying LMVT to h(x) =

g(x)− f(x), we obtain that there exists c ∈ (0, b) such that

h′(c) =
h(b)− h(0)

b− 0
=
g(b)− f(b)

b
≥ 0.

But h′(c) = g′(c)− f ′(c) < 0. Hence we get a contradiction.

19. Take any x, y ∈ [a, b], x < y (say) and apply MVT to f on the interval [x, y]. This result

is really important, and will be used often in the rest of problems (or even in the course!).

20. If x is such that f ′(x) = 0, then the given inequality holds with equality. If for some

x, f ′(x) < 0, then MVT applied to f on the interval [x + f ′(x), x] yields that f(x) −
f(x + f ′(x)) = f ′(c)(−f ′(x)), for some c with x + f ′(x) < c < x. Now, since the second

derivative is positive, f ′ is increasing. Hence c < x =⇒ f ′(c) < f ′(x) < 0. Therefore,

f(x) − f(x + f ′(x)) < 0, which yields the required inequality. In the case f ′(x) > 0, by

the same argument we have f(x + f ′(x)) − f(x) = f ′(x)f ′(c), for some c between x and

x+f ′(x). And we have x < c =⇒ f ′(c) > f ′(x) > 0. Hence we get f(x)−f(x+f ′(x)) < 0,

as desired.

21. It is easily seen that x = 3 is a root of the equation. Consider the function f(x) =

(3/6)x+(4/6)x+(5/6)x. If there be some other root of the equation, then Rolle’s theorem

would imply that f ′(c) = 0 for some c ∈ R. But we observe that, f ′(x) < 0 for every

x ∈ R. Another solution can be sketched out using only the fact that f is decreasing.

22. Use induction on n. The claim is trivial for n = 1. Suppose it holds for n = k. Then, for

n = k + 1, rewrite the equation as

f(x) = a1 + a2x
θ2−θ1 + a3x

θ3−θ1 · · ·+ anx
θn−θ1 = 0.

If this equation has more than n − 1 = k roots, then by Rolle’s theorem, the equation

f ′(x) = 0 will have more than k−1 roots. But this contradicts the induction hypothesis for

n = k (since the equation f ′(x) = 0 is of the same form). (Note: The induction hypothesis

should be: for any non-zero a1, a2, . . . , an and any distinct θ1, . . . , θn, the equation a1x
θ1 +

· · ·+ anx
θn = 0 has at most n− 1 roots in (0,∞).)
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23. Apply Rolle’s theorem on the function

h(x) = det

1 f(x) g(x)

1 f(a) g(a)

1 f(b) g(b)

 .

Note that h(x) is just a linear combination of f(x) and g(x), i.e. we can write h(x) =

k +m · f(x) + n · g(x) for some constants k,m, n.

24. Applying Cauchy’s MVT with the functions f(x) and g(x) = x2, we can say that there

exists c1 ∈ (a, b) such that
f(b)− f(a)

b2 − a2
=
f ′(c1)

2c1
. (∗)

On the other hand, LMVT applied to f(x) provides c2 ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c2).

Substituting this in (∗), we get the desired result.

25. Applying Cauchy’s MVT to the functions f(x)/x and 1/x on the interval [a, b], we can

say that there exists c ∈ (a, b), for which

f(b)/b− f(a)/a

1/b− 1/a
=

(cf ′(c)− f(c))/c2

−1/c2
.

After a little manipulation, this is seen to be same as the desired equation.

26. Let, if possible, f ′(x) ≥ 1 + f(x)2 for every x ∈ (a, b). Consider g(x) = tan−1 f(x).

(Motivation? Because
∫ f ′(x)

1+f(x)2
dx = tan−1 f(x)+c.) We apply LMVT on g in the interval

[a, b] to arrive at
g(b)− g(a)

b− a
= g′(c) =

f ′(c)

1 + f(c)2
≥ 1.

This implies that g(b)− g(a) ≥ b− a ≥ π. But, on the other hand we have

g(b)− g(a) = tan−1 f(b)− tan−1 f(a) <
π

2
− (−π

2
) = π.

27. Apply LMVT with the function g(x) = f(f(x)) to get x0 ∈ (a, b) such that

g′(x0) = 1 =⇒ f ′(f(x0))f
′(x0) = 1.

Now, if f(x0) 6= x0 then we take c = x0, d = f(x0) and we are through.
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Else, we have f(a) = a, f(x0) = x0, f(b) = b. Apply LMVT to f on the intervals [a, x0]

and [x0, b] to get c ∈ (a, x0) and d ∈ (x0, b) such that

f ′(c) =
f(x0)− f(a)

x0 − a
= 1, and f ′(d) =

f(b)− f(x0)

b− x0
= 1.

28. First note that f(0) = lim
n→∞

f(1/n) = 1. Next, since f ′(0) exists, we can write

f ′(0) = lim
n→∞

f(1/n)− f(0)

1/n− 0
= 0.

Because if we know that lim
x→a

g(x) exists, then we can evaluate the limit using any particular

sequence. Since we also know that f ′′(0) exists, we shall evaluate it using one particular

sequence. The choice of this sequence is going to be very special. For each n ≥ 1, we

apply LMVT to f on the interval
[

1
n+1

, 1
n

]
to get

f ′(cn) =
f( 1

n
)− f( 1

n+1
)

1
n
− 1

n+1

= 0 for some cn, where
1

n+ 1
< cn <

1

n
.

Now, invoking Sandwich theorem, we can say that cn → 0 as n→∞. Hence,

f ′′(0) = lim
n→∞

f ′(cn)− f ′(0)

cn − 0
= lim

n→∞

0− 0

cn − 0
= 0.

29. Call f−1 = g and h(x) = x1/3. Cauchy’s MVT gives

f−1(8x)− f−1(x)

x1/3
=
g(8x)− g(x)

h(8x)− h(x)
=
g′(c)

h′(c)

for some c ∈ (x, 8x). Observe that,

g′(c)

h′(c)
=

3c2/3

f ′(f−1(c))
=

3c2/3

24f−1(c)2 + 3
.

Substituting d = f−1(c) here, we obtain

f−1(8x)− f−1(x)

x1/3
=

3(8d3 + 3d)2/3

24d2 + 3
.

Now, we let x→∞ (which implies c→∞ and hence d→∞) to write

lim
x→∞

f−1(8x)− f−1(x)

x1/3
= lim

d→∞

3(8d3 + 3d)2/3

24d2 + 3
=

1

2
.
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30. Yes, we can conclude that f must be unbounded.

Proof: Let, if possible, f be bounded. Then there exists M > 0 such that |f(x)| < M

holds for all x. Now, for every positive integer n, we can apply MVT to f in the interval

[n, n+ 1] to get

f(n+ 1)− f(n) = f ′(cn),

for some cn ∈ (n, n+ 1). Notice that cn →∞ as n→∞. Hence we must have

lim
n→∞

f ′(cn) =∞. (?)

But, for each n, |f ′(cn)| = |f(n + 1)− f(n)| ≤ 2M. This shows that f ′(cn) is a bounded

sequence, which contradicts (?).

31. Consider f(x) = P (x)/a. Then f(x) is a monic polynomial with real coefficients and has

degree b. It suffices to show that

lim
x→∞

(
f(x+ 1)1/b − f(x)1/b

)
= 1. (1)

Note, since the leading coefficient of f is positive, so f(x) > 0 for all x > some x0. Hence,

f(x)1/b is well-defined for x > x0. For any fixed x > x0, Mean Value Theorem implies

that there exists c between (x, x+ 1) such that

f(x+ 1)1/b − f(x)1/b

x+ 1− x
=

1

b
f(c)

1
b
−1f ′(c). (2)

Here c depends on x. But the only fact we care about is that x < c < x+ 1. Thus, c→∞
if x→∞. Now, in view of the equations (1) and (2), it suffices to show that

lim
t→∞

1

b
f(t)1−

1
b f ′(t) = 1. (3)

Proving the last limit is easy. Think of writing f(t) as tb +ab−1t
b−1 + · · ·+a1t+a0. Then,

lim
t→∞

f ′(t)

b f(t)
b−1
b

= lim
t→∞

btb−1 + (a poly. of degree ≤ b− 2)

b
(
tb + a poly. of degree ≤ b− 1

) b−1
b

.

Dividing the numerator and denominator by tb−1, the last limit equals

= lim
t→∞

b+ some 1/t, 1/t2 etc.

b
(

1 + some 1/t, 1/t2 etc.
) b−1

b

= 1.
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32. Fix any x, y ∈ [a, b] and λ ∈ (0, 1) (if λ = 0 or 1 then the conclusion is trivial). Call

λx+ (1− λ)y = z. Then, x < z < y and observe that

λx+ (1− λ)y = z ⇐⇒ λ =
y − z
y − x

.

Now, the inequality that we want to show, can be written as

f(z) ≤ y − z
y − x

f(x) +
z − x
y − x

f(y). (1)

We can rearrange this to write

y − z
y − x

(f(z)− f(x)) ≤ z − x
y − x

(f(y)− f(z)),

or,
f(z)− f(x)

z − x
≤ f(y)− f(z)

y − z
. (2)

This can be easily proved, using LMVT. We apply LMVT to f on the intervals [x, z] and

[z, y] separately to get

f(z)− f(x)

z − x
= f ′(c1) and

f(y)− f(z)

y − z
= f ′(c2) (3)

for some c1, c2 such that c1 ∈ (x, z) and c2 ∈ (z, y). Now, since f ′′ > 0 implies that f ′ is

increasing, we have c1 < z < c2 =⇒ f ′(c1) ≤ f ′(c2). This, combined with (3), proves (2).

Comment: The inequality f ′(c1) ≤ f ′(c2) is actually strict, because f ′′ > 0 on (a, b).

Hence, the required inequality is actually a strict inequality, if f ′′ happens to be strictly

positive on (a, b).
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