Ramanujan School of Mathematics

Class Test 3 on Calculus

Time allotted: 2 hours
Total points: 40

Attempt all the questions. You can use any result discussed in the class, but you have to state it properly. Since it is a 'take-home' exam, I can only request you to take the test honestly and abide by the time limit. Do not cheat to yourself. All the best!

1. $(5+5$ points $)$
(a) Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Assume that $g\left(x_{0}\right)=0$ and $g^{\prime}(x)>g(x)$ for every $x \in \mathbb{R}$. Prove that $g(x)>0$ for every $x>x_{0}$.
(b) For any $a>0$ prove that the equation $a e^{x}=1+x+x^{2} / 2$ has a unique real root.
2. $\left(3+3+4\right.$ points) Let $p_{1}, p_{2}, \ldots, p_{n} \in(0,1)$ such that $\sum_{i=1}^{n} p_{i}=1$. For $\alpha \geq 0, \alpha \neq 1$, define

$$
\mathrm{H}(\alpha)=\frac{1}{1-\alpha} \log \left(\sum_{i=1}^{n} p_{i}^{\alpha}\right) .
$$

(a) Calculate $\lim _{\alpha \rightarrow 1} \mathrm{H}(\alpha)$.
(b) Show that

$$
\frac{d \mathrm{H}(\alpha)}{d \alpha}=\frac{1}{(1-\alpha)^{2}} \sum_{i=1}^{n} z_{i} \log \left(p_{i} / z_{i}\right),
$$

where $z_{i}=p_{i}^{\alpha} / \sum_{j=1}^{n} p_{j}^{\alpha}$.
(c) Hence or otherwise show that $\mathrm{H}(\alpha)$ is a non-increasing function of α.
3. (10 points) Find the area of the largest circle centred at the origin which is inscribed between the graphs of the functions

$$
y=\frac{1}{1+x^{2}}, \text { and } y=-\frac{1}{1+x^{2}} .
$$

(You need not find an approximate value, just find an expression.)
4. (10 points) Suppose that $f:[0, \pi] \rightarrow \mathbb{R}$ is a differentiable function (assume that the one sided derivatives exist at both the endpoints) such that there is no $x \in[0, \pi]$ satisfying

$$
f(x)=f^{\prime}(x)=0 .
$$

Show that the set $S=\{x: f(x)=0\}$ must be finite.

