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Warm Up

1. Suppose that xn ≥ 0 for all n ≥ 1 and xn converges to x. Show that limn→∞
√
xn =

√
x.

2. Suppose that xn converges to x. Show that sinxn converges to sin x and cosxn converges

to cos x. Is it necessary that tan xn converges to tanx?

Solution:

1. Since xn ≥ 0 for all n ≥ 1, so we must have x ≥ 0. If x = 0, the result is easy to show

(xn < ε2 =⇒ √
xn < ε). Next, assume that x > 0. Fix any ε > 0. Observe that,

|
√
xn −

√
x| = |xn − x|√

xn +
√
x
≤ |xn − x|√

x
. (∗)

Since xn → x, we have an N ∈ N such that |xn−x| < ε
√
x holds for all n ≥ N . Hence,

(∗) implies that |√xn −
√
x| < ε holds for every n ≥ N. �

2. We shall use the fact that | sin t| ≤ |t| which holds for all t ∈ R. (It can be proved using

a diagram of a unit circle.) Using this, we obtain

| sinxn − sinx| =
∣∣∣∣2 sin

xn − x
2

cos
xn + x

2

∣∣∣∣ ≤ ∣∣∣∣2 sin
xn − x

2

∣∣∣∣ ≤ |xn − x|.
Since |xn−x| < ε holds for all but finitely many n, we get the same for | sinxn− sinx|.
Hence we conclude that sin xn converges to sin x. For cos, we can do as follows: since

yn = π
2
− xn converges to y = π

2
− x, we can say that sin yn converges to sin y. This is

same as saying that cosxn converges to cosx. Next, for tan, observe that if x 6= (2k+1)π
2

for k ∈ Z then we get tanxn =
sinxn
cosxn

→ sinx

cosx
= tanx as n→∞. But if x = (2k+1)π

2

for some k ∈ Z then it might happen that tanxn does not converge at all. Here is a

counter-example: xn = π
2
− 1

n
if n is odd and π

2
+ 1

n
if n is even. Convince yourself that

although xn converges to π
2
, tanxn does not converge at all.

Suppose xn is a sequence that converges to x (in symbols, xn → x). We have seen earlier

that axn + b → ax + b, |xn| → |x|, xkn → xk (k ∈ N), sinxn → sinx, cosxn → cosx,
√
xn →

√
x (provided xn ≥ 0), tanxn → tanx (provided cosx 6= 0). You can also show
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that for any polynomial P (·), we have P (xn)→ P (x). This idea generalizes to the notion of

continuity:

Definition. We say that f(x) is continuous at x = a if for every sequence xn (belonging to

the domain of f) that converges to a, it holds that f(xn) converges to f(a).

As per our discussion above, it follows that ax + b, |x|, xk (k ∈ N), sinx, cosx are con-

tinuous at every a ∈ R,
√
x is continuous at every a ≥ 0 and tanx is continuous at every

a /∈ {(2k + 1)π
2

: k ∈ Z}. Next, we shall see a few properties of continuous functions.

Theorem. Suppose that f(x) and g(x) are continuous at x = a. Then, the following

functions are also continuous at x = a: f(x) + g(x), f(x) − g(x), cf(x) (where c is a

constant), f(x)g(x), |f(x)|,max{f(x), g(x)},min{f(x), g(x)}.

Proof. Take any sequence xn that converges to a. Since f, g are continuous at x = a, we have

lim
n→∞

f(xn) = f(a), lim
n→∞

g(xn) = g(a). Hence we get lim
n→∞

f(xn) + g(xn) = f(a) + g(a). This

shows that f+g is continuous at x = a. In a similar manner we can show that f−g, cf, fg, |f |
are continuous at x = a. Next, let us consider h(x) = max{f(x), g(x)}. Observe that for

any y, z ∈ R, we have

max{y, z} =
y + z + |y − z|

2
.

Hence,

h(x) =
1

2

(
f(x) + g(x) + |f(x)− g(x)|

)
.

Complete the proof yourself. Do the same for min{f(x), g(x)}. �

Note that the last theorem allows us to construct a large class of continuous functions

from the elementary ones, e.g. any polynomial, | sinx|,
√

1− x2, x+ cosx

x2 + 1
, etc.

Next, we shall see another definition of continuity. Suppose f(x) is continuous at x = a.

When we draw the graph of f(x), what do you expect (for the function to be continuous at

x = a)? It is expected that as x gets closer and closer to a, f(x) gets closer and closer to

f(a). This intuition is formalised in the following definition:

Definition. We say that f(x) is continuous at x = a if, for every ε > 0 there exists δ > 0

such that for all x ∈ (a− δ, a+ δ) it holds that f(x) ∈ (f(a)− ε, f(a) + ε).

In words, it says that f(x) will be sufficiently close to f(a) if we take x to be sufficiently

close to a. To have f(x) to be at a distance less than ε from f(a), we need x to be at a

distance less than δ from a. The definition says that for every ε > 0, there exists such a

δ > 0.
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One important point to note here is the order of the quantifiers ‘for all’ and ‘there exists’.

Why does their ordering matter? You should get an answer by observing the following

statements:

(i) ∀ city C in India, ∃ a 6-digit number n such that n is the pincode of city C.

(ii) ∃ a 6-digit number n such that ∀ city C in India, n is the pincode of city C.

Can you give a real-life example of continuous function? There are plently of examples,

e.g. your age as a function of time, your height as a function of your age (not rounded

off to ‘years’), speed of a car. Can you give a real-life example of a function which is not

continuous? One example is the fare of any public transport (bus, metro) as a function of

the distance from the place you boarded. (From one stoppage to another it jumps in discrete

steps, it does not change continuously.)

One question that might come to your mind: how can we have two seemingly different

definitions for the same thing (continuity)? We shall address this question shortly; before

that let us do a few problems using each of the two approaches: sequential definition and

ε− δ definition.

Problem. Suppose f : R→ R is a function that satisfies

|f(x)− f(y)| ≤ λ|x− y| for all x, y ∈ R.

(Here λ > 0 is fixed.) Show that f(x) is continuous (at x = a for every a ∈ R).

Proof. Fix any a ∈ R, we shall show that f(x) is continuous at x = a.

(i) Using sequential definition: Take any sequence xn that converges to a. For every ε > 0,

there exists N ∈ N such that |xn − a| < ε/λ holds for all n ≥ N. Then for every n ≥ N, we

get |f(xn)− f(a)| ≤ λ|xn − x| < ε. �

(ii) Using ε−δ definition: Fix any ε > 0. We choose δ = ε/λ. Then observe that for every

x such that |x−a| < δ, we get |f(x)−f(a)| ≤ λ|x−a| < λδ = ε. (Note, the choice of δ comes

from a rough-work, which is just the above chain of inequalities. We had |f(x)− f(a)| < λδ,

so we just set that to be equal to ε.) �

Problem. Suppose that f : A → B and g : B → C (so that (g ◦ f)(x) = g(f(x)) is

well-defined). If f(x) is continuous at x = a and g(y) is continuous at y = f(a), show that

h(x) = g(f(x)) must be continuous at x = a.

Proof. (i) Using sequential definition: Take any sequence xn that converges to a. Since f(x)

is continuous at x = a, we deduce that f(xn) converges to f(a). Now, since yn = f(xn) is a

sequence that converges to f(a), the continuity of g(y) at y = f(a) yields that g(yn) must
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converge to g(f(a)). This is same as saying that g(f(xn)) = h(xn) converges to g(f(a)) =

h(a). Since this holds for every sequence xn that converges to a, we conclude that h(x) is

continuous at x = a. �

(ii) Using ε − δ definition: Fix any ε > 0. Since g(y) is continuous at y = f(a), there

exists a δ > 0 such that for every y ∈ (f(a)− δ, f(a) + δ) we have |g(y)− g(f(a))| < ε, i.e.,

|y − f(a)| < δ =⇒ |g(y)− g(f(a))| < ε. (?)

Again, since f(x) is continuous at x = a, we have a δ′ > 0 such that for every x ∈ (a−δ′, a+δ′)

we have |f(x)− f(a)| < δ. Combining this with (?) we obtain

|x− a| < δ′ =⇒ |f(x)− f(a)| < δ =⇒ |g(f(x))− g(f(a))| < ε.

(We used (?) for y = f(x).) Thus, we have shown that for every ε > 0 there exists δ′ > 0

such that |g(f(x))− g(f(a))| < ε holds whenever |x− a| < δ′. �

Problem. Consider the function f(x) = bxc = largest integer less than or equal to x. Show

that f(x) is continuous at x = a if and only if a is not an integer.

Proof. The case when a /∈ Z, is left as an exercise for the reader. (Hint: show that for any

a /∈ Z there exists a δ > 0 such that f is constant in (a − δ, a + δ).) Here we shall address

the case when a ∈ Z. We need to show that f(x) is not continuous at x = a.

(i) Using sequential definition: Negation of the sequential definition is easy: we need to

provide a sequence xn such that xn converges to a but f(xn) does not converge to f(a). Here

is one such sequence: xn = a− 1
n
. Note that f(xn) = a− 1 for all n ≥ 1, but f(a) = a. �

(ii) Using ε− δ definition: Writing the negation of the ε− δ definition might be a hurdle

for the reader. Let us do it slowly. First we write the definition for f(x) to be continuous at

x = a:

∀ε > 0,∃δ > 0 such that ∀x ∈ (a− δ, a+ δ), it holds that |f(x)− f(a)| < ε.

To negate this definition, start from the left and change each ∀ to ∃ and vice-versa. The

correct negation of the above will be: f(x) is not continuous at x = a if

∃ε > 0 such that ∀δ > 0, ∃x ∈ (a− δ, a+ δ) for which |f(x)− f(a)| ≥ ε.

We set this ‘bad’ ε to be 1
2
. Then, for every δ > 0, we have x = a − δ

2
∈ (a − δ, a + δ) for

which |f(x)− f(a)| = |(a− 1)− a| = 1 ≥ ε. �

It is now the perfect time to address the equivalence of the two definitions of continuity.
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Problem. Consider the following properties:

(1) For every ε > 0 there exists δ > 0 such that |f(x)−f(a)| < ε holds whenever |x−a| < δ.

(2) For every sequence xn that converges to a it holds that f(xn) converges to f(a).

Show that a function f has property (1) if and only if it has property (2).

Proof. First we shall show that (1) ⇒ (2). Suppose a function has property (1). Take any

sequence that converges to a. We need to show that f(xn) converges to f(a). Fix any ε > 0.

By property (1), there exists δ > 0 such that |f(x)− f(a)| < ε holds whenever |x− a| < δ.

Since xn → a, there exists N ∈ N such that |xn − a| < δ holds for every n ≥ N. Then, for

every n ≥ N we obtain |f(xn)− f(a)| < ε. This completes the proof.

Next we show that (2) ⇒ (1). Suppose a function has property (2). It is actually hard

to give a δ > 0 for any fixed ε > 0 where δ has the desired property. So we shall use the

method of contradiction. Let, if possible, f be a function with property (2), which does not

satisfy (1). The negation of (1) reads: there exists an ε > 0 such that for every δ > 0, there

exists an x ∈ (a − δ, a + δ) for which |f(x) − f(a)| ≥ ε. So, for each n ∈ N, we set δ = 1
n

to get a ‘bad’ x in (a − 1
n
, a + 1

n
), which we call xn. Therefore, xn is a sequence such that

xn ∈ (a − 1
n
, a + 1

n
) and |f(xn) − f(a)| ≥ ε for every n ∈ N. Since a − 1

n
< xn < a + 1

n
,

Sandwich tells us that xn converges to a. But f(xn) being at least ε away from f(a), we see

that f(xn) can not converge to f(a). This contradicts the fact that f has property (2) and

hence completes the proof. �

Exercises

1. Suppose that f(x) is continuous at x = a. Determine, with proof, a necessary and

sufficient condition for 1/f(x) to be continuous at x = a.

2. Suppose that f(x) and g(x) are not continuous at x = a. Is it possible that f(x) + g(x)

is continuous at x = a?

3. Suppose that f(x) is continuous at x = a, but g(x) is not continuous at x = a. Is it

possible that f(x) + g(x) is continuous at x = a?

4. Suppose that f(x) and g(x) are not continuous at x = a. Is it possible that f(x)g(x) is

continuous at x = a?

5. Suppose that f(x) is continuous at x = a, but g(x) is not continuous at x = a. Is it

possible that f(x)g(x) is continuous at x = a?

6. Suppose f and g are functions such that g ◦ f is well-defined. Determine whether it is

possible for g(f(x)) to be continuous at x = a if
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(a) f(x) is discontinuous at x = a but g(y) is continuous at y = f(a).

(b) f(x) is continuous at x = a but g(y) is discontinuous at y = f(a).

(c) f(x) is discontinuous at x = a and g(y) is discontinuous at y = f(a).

7. Define f(x) = sin 1
x

if x 6= 0 and f(0) = 0. Discuss the continuity of f(x).

Note: For this problem, sequential approach is more useful than the ε− δ approach.

8. Define f(x) = x sin 1
x

if x 6= 0 and f(0) = 0. Discuss the continuity of f(x).

Note: For this problem, the ε−δ approach is more useful than the sequential approach.

9. Let A = [1, 2)∪ (2, 3]. Define a function f : A→ R as follows: f(x) = x+ 1 if x ∈ [1, 2)

and 3− x if x ∈ (2, 3]. Can you draw the graph of f(x) without lifting the pen? Is the

function discontinuous at x = 2?

10. Let A = [1, 2] ∪ (3, 4]. Define a function f : A → R as follows: f(x) = x + 1 if

x ∈ [1, 2] and 3 − x if x ∈ (3, 4]. Can you draw the graph of f(x) without lifting the

pen? Determine whether the function is continuous on A or not.

11. Suppose f : R→ R satisfies f(x+ y) = f(x)f(y) for all x, y ∈ R. If f(x) is continuous

at x = 0, then show that f(x) is continuous at x = a for every a ∈ R. (Hint: First show

that f(0) = 0 or 1. What happens if f(0) = 0? If f(0) 6= 0, then show that f(x) 6= 0

for every x ∈ R.)

Hints/Answers

1. If f is continuous at x = a and f(a) 6= 0 then we can show that 1/f is also continuous

at x = a. (Note that it is also a necessary condition.) To prove this, you can use the

sequential definition.

2. Yes. Take f(x) = [x] and g(x) = −[x]. Both f and g are discontinuous at any a ∈ Z,
but f + g is continuous everywhere.

3. No. Because if h = f + g and f are both continuous at x = a then their difference

h− f must also be continuous at x = a.

4. Yes. Take a = 0 and define f(x) =

 0 if x 6= 0

1 if x = 0
and g(x) =

 1 if x 6= 0

0 if x = 0
.

5. Yes. Take a = 0 and define f(x) = 0 for all x, and g(x) =

 1 if x 6= 0

0 if x = 0
.
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6. (a) Yes. Take any function f which is discontinuous at x = a and set g ≡ 0 (i.e.

g(x) = 0 for all x).

(b) Yes. Take g(x) =

 1 if x is rational

0 if x is irrational
and f(x) =

√
2 for all x. You can show

that g is not continuous anywhere. But, g(f(x)) = 0 for all x, hence g ◦ f is

continuous everywhere.

(c) Yes. Set a = 0. Take f(x) = g(x) = 1/x for x 6= 0 and define f(0) = g(0) = 0.

Observe that g(f(x)) = x for all x.

7. When a 6= 0, its easy to see that f(x) is continuous x = a. We claim that f is discon-

tinuous at x = 0. To prove our claim, it sufficies to give two sequences xn and yn such

that both of them converge to 0, but f(xn) and f(yn) do not converge to the same

limit. One possible example is the followng:

Take xn =
1

2nπ + π/2
and yn =

1

2nπ − π/2
, for all n ≥ 1.

8. When a 6= 0, its easy to see that f(x) is continuous x = a. We claim that f is continuous

at x = 0 as well. Observe that for every x, we have |f(x)−f(0)| = | sinx| ≤ |x| = |x−0|.
So, we can take δ = ε to meet the requirement in the ε− δ definition.

9. It should be clear that f is continuous at x = a for every a ∈ [1, 2) ∪ (2, 3]. Only

what can confuse you is the question of continuity at x = 2. However, since f is not

defined at x = 2, this question does not arise, because f(2) is not defined!. (This is

somewhat controversial. For f to be continuous at x = a, it is universally accepted that

x must belong to the domain of f. But for discontinuity, some authors (e.g. Rudin)

define f to be discontinuous at x = a only when a belongs to the domain and f is not

continuous at a. I also prefer this definition and hence say that f is neither continuous

nor discontinuous at x = 2.)

Note, though the function f is continuous on its entire domain, one cannot draw the

graph without lifting the pen. (Who told you that the graph of a continuous function

must be drawn without lifting the pen!).

10. The function is continuous on its domain A. As pointed out above, the question of f

being continuous at x = a does not arise if a /∈ A.

11. Carry out the steps given in the hint. Also see the next exercise set.
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