
Integration : Theory and Problems (Day 1)

Aditya Ghosh

1 How to formally define the area?

You might have heard that
∫ b
a
f(x)dx denotes the area under the graph1 of f(x) from x = a

to x = b. But what does that really mean? Recall how we learnt the concept of area since

childhood. First we define a certain shape, suppose a square, to have a ‘unit area’. Then for

any rectangle, we measure the sides in that unit and say that area of the rectangle is length

times breadth (l×b), which essentially means that the area of the rectangle is lb times the unit

area. For a triangle, we perform a similar procedure (we compare its area with a rectangle).

But how to define area of some arbitrary shape? Intuition says that we should try to cover

up the shape using those unit squares and find out how many of the unit squares are needed.

Let us now try to make this intuition precise.

Given a function f defined on [a, b], we wish to define the quan-

tity
∫ b
a
f(x) dx such that it represents the signed area of the region

in the xy-plane that is bounded by the graph of f, the x-axis and

the vertical lines x = a and x = b. The area above the x-axis adds

to the total and that below the x-axis subtracts from the total.

For the time being, assume that the graph of f(x) is ‘simple’,

like the ones shown here. In order to approximate the area (as

noted above), we divide the interval [a, b] into some disjoint sub-

intervals, suppose using the points a = x0 < x1 < · · · < xn−1 <

xn = b, and pick a point ti in each [xi−1, xi] such that f(ti) would

be the height of a suitable rectangle that approximates the area

under the curve within that sub-interval. Then we can use the

sum of the areas of these rectangles to approximate the desired

area.

However, there is a little problem. How do we choose those ti’s?

Choosing ti to be one of the endpoints might not always serve the

purpose. Let us consider two extreme cases: when ti is chosen such that f(ti) is the minimum

or the maximum value of f within the sub-interval [xi−1, xi]. We know that if f is continuous

on a closed bounded interval (like [xi−1, xi]) then it attains a minimum and a maximum within

that interval. But not every bounded function f has this property2, we should use sup and

inf instead of max and min, respectively.

1Here graph of f : [a, b]→ R means a curve that consists of the points {(t, f(t)) : a ≤ t ≤ b}
2Take f(x) = x(1 − x) if x 6= 1/2 and set f(1/2) = 1/8. Then f does not attain a maximum value within a

sub-interval that contains the point 1/2.
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For each 1 ≤ i ≤ n, we define

Mi = sup{f(t) : xi−1 ≤ t ≤ xi}, and mi = inf{f(t) : xi−1 ≤ t ≤ xi}.

Then, for any choice of ti’s, we have

n∑
i=1

mi(xi − xi−1) ≤
n∑
i=1

f(ti)(xi − xi−1) ≤
n∑
i=1

Mi(xi − xi−1). (1)

Given the partition P = {a = x0 < x1 < · · · < xn−1 < xn = b}, the LHS of (1) is the worst

under-estimate of the desired area with this partition (worst over all possible choices of ti)

and the RHS is the worst over-estimate. Keeping aside the ti’s for the moment, we might also

write
n∑
i=1

mi(xi − xi−1) ≤ desired area ≤
n∑
i=1

Mi(xi − xi−1). (2)

Note that these under-estimate and over-estimate depend only on the partition P (and on f

of course!), so we can denote them by L(P, f) and U(P, f), respectively. The quantity in the

middle of (1) is called a Riemann-sum approximation of the desired area.

Example 1.1. Let us consider the function f(x) = x on [0, 1]. Take the partition P that

divides [0, 1] into n intervals of equal length, i.e., Pn = {0, 1/n, 2/n, . . . , 1}. Write xi = i/n

for 0 ≤ i ≤ n. Note that for x ∈ [xi−1, xi], the maximum possible value of f(x) is Mi = f(xi)

and the minimum possible value is mi = f(xi−1). Hence,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

f(xi) =
1

n

n∑
i=1

i

n
=
n(n+ 1)

2n2

and

L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

f(xi−1) =
1

n

n∑
i=1

i− 1

n
=
n(n− 1)

2n2
.

In this simple example, we already know what the area should be, because the region under

the curve y = f(x) = x for x ∈ [0, 1] (and bounded below by the x-axis) is just a triangle

which has area 1/2. Observe that U(Pn, f) is a slight over-estimate, while L(Pn, f) is a slight

under-estimate, which is exactly what we expect. In fact, letting n → ∞, we see that both

U(Pn, f) and L(Pn, f) converges to 1/2.

Note that in the above example, we just considered a specific sequence of partitions. But

there always is a plethora of partitions to choose from! Then how to develop a general notion

of the area? Let us go back to equation (1) once again. The Riemann-sum approximation∑n
i=1 f(ti)(xi − xi−1) is always an estimate of the area, regardless of how we choose the ti’s.

Intuition says that if the sub-intervals are made smaller and smaller, then this approximation

will get closer and closer to the actual area. Having this in mind, let us try to perceive the
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following definition of integrals given by Riemann:

Definition 1.1 (Riemann’s definition of integrability).

We say that f is (Riemann-)integrable on [a, b] if there exists a real number A such that for

every ε > 0 there exists δ > 0 such that whenever a partition P = {a = x0 < x1 < · · · < xn =

b} of [a, b] has the property that the length of each sub-interval is less than δ, then it holds that∣∣∣∣∣
n∑
i=1

f(ti)(xi − xi−1)− A

∣∣∣∣∣ < ε,

irrespective of the choice of the points ti’s where ti ∈ [xi−1, xi]. If the above holds, we write∫ b

a

f(x)dx = A.

Informally, the above definition says that by making the length of each sub-interval sufficiently

small, we can ensure the Riemann-sum approximation to be as close to
∫ b
a
f(x)dx as we please.

In particular, if we take n sub-intervals of equal length (i.e., each of length b−a
n

) and let n→∞,
we get the following theorem:

Theorem 1.1. If f is integrable on [a, b], then it holds that

lim
n→∞

b− a
n

n∑
k=1

f

(
a+ k · b− a

n

)
=

∫ b

a

f(x)dx.

On one hand, this theorem can be used to calculate integrals of very simple functions (e.g.,

x, x2, ex, sinx etc.), while on the other hand, it can be used to calculate certain limits which

can be expressed as the limit in the above LHS. This latter idea is extensively used for creating

and solving competition problems. We shall see some interesting examples soon!

Corollary 1.1. If f is integrable on [0, 1] then

lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
=

∫ 1

0

f(x)dx.

Question 1. If lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
= `, does it always imply that

∫ 1

0

f(x)dx = `?

It is undeniable that even understanding the statement of Definition 1.1 takes a lot of effort,

let alone the struggle of learning how to use it to prove that a given function is integrable.

This is where Darboux’s alternate definition (of Riemann integral) comes to our rescue. We

consider all possible partitions of [a, b] and try to find what are the best under-estimate and
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best over-estimate of the desired area, best over the choice of P, i.e., over the class of all

partitions of [a, b]. Intuition suggests that best under-estimate is the largest one among all

such under-estimates L(P, f) and best over-estimate is the smallest one among all such over-

estimates U(P, f). Again, here a smallest or a largest one may not exist, so we use inf and

sup :

best over-estimate = inf U(P, f), best under-estimate = supL(P, f) (3)

where the infimum and the supremum are taken over P, i.e., over all possible partitions of

[a, b]. Note that inf U(P, f) exists because for any partition P, the quantity L(P, f) is a lower

bound on the set of all possible values of U(P, f). A similar argument shows why supL(P, f)

exists. Also note that the best over-estimate is always greater than or equal to the best under-

estimate, but if the former is strictly bigger than the later, then how can we define the area?

Having this notion in mind, we settle for the following definition of the area/integral:

Definition 1.2 (Darboux’s definition of Riemann-integrability).

We say that f is Riemann-integrable on [a, b] if the ‘best over-estimate’ and the ‘best under-

estimate’, as defined in (3) are equal and their common value is denoted by

∫ b

a

f(x)dx.

The reader who is not lost yet might wonder, how can there be two definitions of the same

thing? Of course this is not the first time it is happening in this Calculus course, we already

had seen two equivalent definitions of continuity (ε − δ definition and sequential definition).

What we just need here is a proof that shows the above two definitions to be equivalent. There

are such proofs, but let us skip that for now, since it will obviously be very much involved. If

you are interested, you can look it up in any undergraduate-level textbook on Real Analysis.

It should however be noted that the above definition only attaches a meaning to the symbol∫ b
a
f(x)dx, it does not give any method to calculate it. Moreover, the set of all partitions is

so huge that even for very simple functions, it is notoriously difficult to verify the above

definition, i.e., to show that inf U(P, f) and supL(P, f) are equal. However, there is a result

that is very handy when one tries to prove that a given function is integrable, which is as

follows.

Result 1.1. A function f is integrable on [a, b] if and only if for every ε > 0 there exists a

partition P of [a, b] such that U(P, f)− L(P, f) < ε holds.

We shall not prove this result here either. However, let us use this result to find out some

common classes of functions that are Riemann-integrable.

Result 1.2. If f is monotone on [a, b] then it is integrable on [a, b] as well.

Result 1.3. If f is continuous on [a, b] then it is integrable on [a, b] as well.

4



Proof of Result 1.2. Without loss of generality, we may assume that f is increasing. Then,

for any partition P = {a = x0 < x1 < · · · < xn−1 < xn = b}, we have

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1), and L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Hence, if we choose P such that the length of each sub-interval [xi−1, xi] is small, say less than

δ, then

U(P, f)− L(P, f) =
n∑
i=1

(f(xi)− f(xi−1)) (xi − xi−1)

≤
n∑
i=1

(f(xi)− f(xi−1)) · δ = (f(b)− f(a)) · δ.

So by choosing δ > 0 such that δ · (f(b)− f(a)) ≤ ε, we are through. �

Proof of Result 1.3. Since f is continuous, it attains a maximum and a minimum value in each

sub-interval. Now, we wish to make the sub-intervals very small such that in each of them the

difference between the maximum and minimum value of f is small enough. To achieve this,

uniform continuity would help.

Since f is continuous on this closed and bounded interval [a, b], we know that f must be

uniformly continuous on [a, b]. Hence, for every ε > 0 there exists δ > 0 such that for any

x, y ∈ [a, b] such that |x − y| < δ we have |f(x) − f(y)| < ε. Now, if we choose the partition

P such that length of each sub-interval is less than this δ, then we know that Mi −mi is less

than ε, for each i. Hence

U(P, f)− L(P, f) =
n∑
i=1

(Mi −mi)(xi − xi−1) < ε
n∑
i=1

(xi − xi−1) = ε(b− a),

which completes the proof. (We could have started with ε′ = ε/(b− a) instead.) �

We shall assume the following results without proof. A curious reader can locate the proofs

in any UG-level textbook on Real Analysis.

Result 1.4. If f and g are integrable on [a, b], then so are f ± g, cf (where c is a constant).

Result 1.5. If f is integrable on [a, b], and g is continuous on the range of f , then g ◦ f is

integrable.

You are encouraged to use whatever learnt till now to answer the following questions.

Question 2. If f is integrable on [a, b], is it necessary that |f | is also integrable?

Question 3. Suppose that f and g are integrable on [a, b]. Is it necessary that their product

fg is also integrable on [a, b]? What about max{f, g} and min{f, g}?
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Till now we have not seen any function which is not integrable. Following is a classical

example of such kind.

Example 1.2 (Dirichlet function). Let f : [0, 1]→ R be a function defined as

f(x) =

0 if x ∈ Q,

1 if x /∈ Q.

Take any partition P. In each sub-interval, there is at least one rational and at least one

irrational number, which implies that Mi = 1 and mi = 0 holds for each i. Therefore,

U(P, f) =
n∑
i=1

1 · (xi − xi−1) = 1 · (1− 0) = 1, L(P, f) =
n∑
i=1

0 · (xi − xi−1) = 0,

for any partition P. Hence we can say that f is not integrable on [0, 1], by noting that f does

not meet the requirements in Darboux’s definition.

Remark 1.1. If we change the value of f at just one point, that does not have any influence

on the integrability of f or on the value of the integral. Hence, if a function f is continuous

everywhere except at just one point inside [a, b], then f would be integrable, provided f is

bounded. (It requires a proof though, which we skip for now.)

Remark 1.2. Note that from the very beginning we have imposed a condition that f must

be bounded. How to define integrals of functions such as f(x) = log x on the interval [0, 1] or

g(x) = tanx on the interval [0, π] (with f(0) and g(π/2) being defined something forcibly)?

Integral of such functions are called improper integrals and will be discussed later. For now

you can just keep in mind that they are defined using limits, e.g.,∫ 1

0

log x dx
def
= lim

a→0+

∫ 1

a

log x dx.

Question 4. If f is continuous on [a, b] except only at 1010 many points, will f be necessarily

integrable?

Question 5. Is it possible to have a function f which is integrable but discontinuous at

infinitely many points?

If you know the distinction between countably infinite and uncountably infinite, try to

answer the following question.

Question 6. If we change the value of f at countably many points, will it have any influence

on the integrability of f?
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2 Some basic properties

Result 2.1. If f, g are integrable on [a, b] then

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

Proof. As we mentioned earlier, there is a result which says that f + g is integrable if f, g are

integrable. Hence we can use Theorem 1.1 to get∫ b

a

(f + g) = lim
n→∞

hn

n∑
k=1

(f (a+ khn) + g (a+ khn))

(
where hn =

b− a
n

)

= lim
n→∞

hn

n∑
k=1

f (a+ khn) + lim
n→∞

hn

n∑
k=1

g (a+ khn)

=

∫ b

a

f +

∫ b

a

g

where in the last step we used Theorem 1.1 again. �

In a similar manner we can prove the following results using Theorem 1.1 (and the reader

is strongly encouraged to write their proofs, before proceeding further).

Result 2.2. Let f, g be integrable on [a, b]. Then,

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g, for any

constants α, β.

Result 2.3. Let f be integrable on [a, b]. Then,

∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

Result 2.4. If f is integrable on [a, b] and f(x) ≥ 0 for all x ∈ [a, b] then

∫ b

a

f(x)dx ≥ 0.

However, the proof of the following result involves U(P, f) and L(P, f), so we skip its proof

for now.

Result 2.5. Suppose that f is integrable on [a, c] and on [c, b]. Then f must be integrable on

[a, b] and

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.

Answers to the Questions 1 through 7

1. No. Take, for instance, the Dirichlet function (in Example 1.2).

2. Yes, by applying Result 1.5, because g(x) = |x| is continuous everywhere.
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3. Yes, by applying Result 1.5, because we can write fg = ((f +g)2− (f−g)2)/4,max{f, g} =

(f + g + |f − g|)/2 and min{f, g} = (f + g − |f − g|)/2.

4. Yes, by repeated application of Remark 1.1.

5. Yes, it is possible. Take f(x) = 1 if x = 1/n for some n ∈ N, and f(x) = 0 otherwise.

You may use the U(P, f) − L(P, f) < ε approach to show that f is integrable. It can also

be shown that
∫ 1

0
f(x)dx = 0.

6. If f is integrable and g is obtained from f by changing f at countably many points, then g

need not be integrable. E.g., take g to be the Dirichlet function and f(x) = 1 for all x.

7. No, because we may start with f ≡ 0 and change its value at just one point. For instance,

take f(x) = 0 if x 6= 1 and f(1) = 2. Then,
∫ 2

0
f(x)dx = 0, but f is not identically zero.

3 Some problems

Problem 3.1. (MVT for integrals) Let f be continuous and g be integrable on [a, b] and

assume that g is positive. Show that there exists c ∈ [a, b] such that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

Solution. Since f is continuous on [a, b], we know that f attains a minimum and a maximum

on [a, b], say f(m) ≤ f(x) ≤ f(d) for every x ∈ [a, b]. Since g is positive, we have

f(m)g(x) ≤ f(x)g(x) ≤ f(d)g(x), for every x ∈ [a, b],

and hence

f(m)

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(d)

∫ b

a

g(x)dx

Now the conclusion follows from the intermediate value property of f. �

Question 7. Suppose that f is integrable and non-negative on [a, b]. If

∫ b

a

f(x)dx = 0, is it

necessary that f must be identically zero on [a, b]?

As you might have guessed, the answer to the above question is in the negative (try to

find a counter-example then). However, if we impose an additional assumption that f must

be continuous, then the following result holds.

Problem 3.2. Let f be continuous and non-negative on [a, b]. If

∫ b

a

f(x)dx = 0, then show

that f must be identically zero on [a, b].
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Intuition says that if f is strictly positive at some point, then there will be a part of the

curve y = f(x) that lies strictly above the x-axis, which implies that the area under the curve

can not be zero. Let us now try to write a rigorous proof, with the help of ε and δ.

Solution. Let, if possible, there be a point c ∈ (a, b) such that f(c) > 0. By continuity, for

ε = f(c)/2, there exists a δ > 0 such that |f(x)− f(c)| < ε for every |x− c| < δ. Note that

|f(x)− f(c)| < ε =⇒ ε > |f(x)− f(c)| > |f(c)| − |f(x)| =⇒ f(x) > f(c)/2.

Since f ≥ 0 on [a, b], we have∫ b

a

f =

∫ c−δ

a

f +

∫ c+δ

c−δ
f +

∫ b

c+δ

f ≥
∫ c+δ

c−δ
f(x)dx ≥

∫ c+δ

c−δ

f(c)

2
dx = f(c) · δ > 0

which violates the given condition that

∫ b

a

f = 0. Therefore, for

∫ b

a

f(x)dx to be 0, we need

f(x) = 0 for all x ∈ (a, b).

Finally, the continuity of f ensures that f(a) = 0 = f(b). �

Problem 3.3. Suppose that f : R→ R is continuous and satisfies∫ 1

0

f(x)(1− f(x))dx =
1

4
.

What can you say about f?

Solution. First note that∫ 1

0

f(x)(1− f(x))dx =
1

4
⇐⇒

∫ 1

0

(f(x)− 1/2)2dx = 0.

Since the function g(x) = (f(x) − 1/2)2 is continuous and non-negative, this implies that

g(x) = 0, i.e., f(x) = 1/2 for every x ∈ [0, 1]. However, having no information on f outside

the interval [0, 1], we are unable to conclude anything about f beyond [0, 1]. �

Problem 3.4 (Cauchy-Schwarz inequality). Let f, g be integrable on [a, b]. Prove that(∫ b

a

f(x)2dx

)(∫ b

a

g(x)2dx

)
≥
(∫ b

a

f(x)g(x)dx

)2

Furthermore, if f, g are continuous, then equality holds if and only if f(x) = λg(x) for some

constant λ and for all x ∈ [a, b].

One way to prove this is to use Theorem 1.1, which I encourage you to write down. This

proof, however, fails to provide a justification for the equality case here. So we shall give

another proof below, which essentially mimics the proof of C-S inequality for real numbers.
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Solution. For t ∈ R define

h(t) =

∫ b

a

(f(x)− tg(x))2dx = At2 − 2Bt+ C,

where

A =

∫ b

a

g(x)2dx, B =

∫ b

a

f(x)g(x)dx, C =

∫ b

a

f(x)2dx.

Now, h(t) is a quadratic in t, which is always non-negative, with leading coefficient A > 0

(the case A = 0 is trivial, in view of the Result 3.2). Hence3 it follows that the discriminant

4B2 − 4AC must be non-positive, i.e.,

B2 ≤ AC.

This is precisely the C-S inequality that we wanted to show. For equality to hold, we must

have discriminant equal to zero, which says that the function h(t) has a real root, say t = λ.

After a little algebra, this is seen to be same as saying that

h(λ) =

∫ b

a

(f(x)− λg(x))2dx = 0.

Since the function (f(x) − λg(x))2 is continuous and non-negative, Result 3.2 implies that

f(x)− λg(x) must be identically zero on [a, b]. �

3We can express h(t) = At2 − 2Bt+ C as

h(t) =
(At−B)2

A
− 4B2 − 4AC

4A
.

So, the minimum value of h(t) is the negative of its discriminant, divided by 4A. That minimum value has to be non-

negative here, and since A > 0, its numerator must be non-negative too. Hence the discriminant must be non-positive.
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Exercise 1 on Integration

1. Define f(x) =

∫ 1

0

|t − x|t dt, for x ∈ R. Sketch the graph of f(x). What is the minimum

value of f(x)?

2. For any positive integer n, let C(n) denote the number of points which have integer coor-

dinates and lie inside the circle x2 + y2 = n2. Show that the limit

lim
n→∞

C(n)

n2

exists and also evaluate this limit. Can you explain the result intuitively?

3. Let f, g be polynomials of degree n such that

∫ 1

0

xkf(x)dx =

∫ 1

0

xkg(x)dx holds for each

k = 0, 1, . . . , n. Show that f = g.

4. Let f, g be continuous and positive functions defined on [0, 1] satisfying∫ 1

0

f(x)dx =

∫ 1

0

g(x)dx.

Define yn =

∫ 1

0

(f(x))n+1

(g(x))n
dx, for every integer n ≥ 0. Show that {yn}n≥0 is an increasing

sequence.

5. Suppose that f is integrable on [a, b]. Define

F (x) =

∫ x

a

f(t)dt, for a ≤ x ≤ b.

Then, (i) F is continuous on [a, b], and (ii) if f is continuous at c ∈ [a, b], then F will be

differentiable at c, with F ′(c) = f(c).

6. If f is differentiable on [a, b] such that f ′ is continuous on [a, b], then∫ b

a

f ′(x)dx = f(b)− f(a).

7. If f is continuous on [a, b], show that

∫ b

a

f(t)dt = f(c)(b−a) must hold for some c ∈ (a, b).

8. Let f : [0, 1] → R be a continuous function such that

∫ 1

0

f(x)dx = 1. Show that there

exists a point c ∈ (0, 1) such that f(c) = 3c2.

9. Prove the inequalities:
π2

9
≤
∫ π/2

π/6

x

sinx
dx ≤ 2π2

9
.
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