Exercise 3 on Integration

1. Evaluate the following limits:
(a) $\lim _{n \rightarrow \infty} \frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k+1}}(k \in \mathbb{N})$
(c) $\lim _{n \rightarrow \infty} n^{2}\left(\frac{1}{n^{3}+1^{3}}+\frac{1}{n^{3}+2^{3}}+\cdots+\frac{1}{2 n^{3}}\right)$
(b) $\lim _{n \rightarrow \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2) \cdots(n+n)}$
(d) $\lim _{n \rightarrow \infty} \frac{1}{n} \log \binom{2 n}{n}$
2. Evaluate the following integrals:

$$
\int_{1 / e}^{e}|\log x| d x, \int_{0}^{\pi / 2} \frac{1}{1+\tan ^{n} x} d x, \int_{0}^{\pi / 4} \frac{\sin x}{\sin x+\cos x} d x, \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

3. Suppose f is continuous on $[0,1]$. Prove that

$$
\int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\pi / 2} f(\sin x) d x
$$

Hence (or otherwise) calculate

$$
\int_{0}^{\pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x .
$$

4. Prove the following inequality

$$
\int_{0}^{\pi}\left|\frac{\sin n x}{x}\right| d x \geq \frac{2}{\pi}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right) .
$$

5. For every positive integer n, evaluate the integrals

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x, \int_{0}^{\pi / 2} \cos ^{n} x d x, \int_{0}^{\pi / 4} \tan ^{2 n} x d x, \text { and } \int_{0}^{\pi / 2} \frac{\sin (2 n+1) x}{\sin x} d x
$$

6. For any $n \in \mathbb{N}$, evaluate the integral $\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$ and hence calculate the following sum

$$
\frac{1}{1}\binom{n}{0}-\frac{1}{3}\binom{n}{1}+\frac{1}{5}\binom{n}{2}-\cdots+(-1)^{n} \frac{1}{2 n+1}\binom{n}{n}
$$

7. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\int_{1}^{x} \frac{\log t}{1+t} d t$. Find all $x \in \mathbb{R}$ that satisfies the equation

$$
f(x)+f(1 / x)=2 .
$$

8. Let f be continuous on \mathbb{R}. If $\int_{-a}^{a} f(x) d x=0$ holds for every $a \in \mathbb{R}$, show that f must be an odd function.
9. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a continuously differentiable function which satisfies $f^{\prime}(t) \geq \sqrt{f(t)}$ for all $t \in \mathbb{R}$. Show that for every $x \geq 1$,

$$
\sqrt{f(x)} \geq \sqrt{f(1)}+\frac{1}{2}(x-1)
$$

10. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a function satisfying $f(1)=1$, and

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}
$$

for every $x \geq 1$. Prove that $\lim _{x \rightarrow \infty} f(x)$ exists and this limit is less than $1+\pi / 4$.
11. Let $f(x)=x^{3}-\frac{3}{2} x^{2}+x+\frac{1}{4}$. For every $n \in \mathbb{N}$ let f^{n} denote f composed n-times, i.e., $f^{n}(x)=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }}(x)$. Evaluate $\int_{0}^{1} f^{2020}(x) d x$.
12. Suppose that $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous. Define $a_{n}=\int_{0}^{1} f(x+n) d x$, for every $n \geq 0$. Suppose also that $\lim _{n \rightarrow \infty} a_{n}=a$. Find the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) d x
$$

13. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function. Prove that,

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \sin n x d x=0
$$

Solution to Exercise 3

1. Evaluate the following limits:
(a) $\lim _{n \rightarrow \infty} \frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k+1}}(k \in \mathbb{N})$
(c) $\lim _{n \rightarrow \infty} n^{2}\left(\frac{1}{n^{3}+1^{3}}+\frac{1}{n^{3}+2^{3}}+\cdots+\frac{1}{2 n^{3}}\right)$
(b) $\lim _{n \rightarrow \infty} \frac{1}{n} \sqrt[n]{(n+1)(n+2) \cdots(n+n)}$
(d) $\lim _{n \rightarrow \infty} \frac{1}{n} \log \binom{2 n}{n}$

Solution.
(a) It equals $\int_{0}^{1} x^{k} d x=\frac{1}{k+1}$.
(Ans)
(b) Taking log, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \log \left(1+\frac{k}{n}\right)=\int_{0}^{1} \log (1+x) d x=x \log x-\left.x\right|_{x=1} ^{x=2}=2 \log 2-1 \tag{Ans}
\end{equation*}
$$

So the desired limit equals $\exp (2 \log 2-1)=4 / e$.
(c) It equals $\int_{0}^{1} \frac{1}{1+x^{3}} d x$. Evaluating this is usually carried out using a partial fraction decomposition: by assuming that

$$
\frac{1}{(1+x)\left(1-x+x^{2}\right)}=\frac{A}{x+1}+\frac{B x+C}{1-x+x^{2}}
$$

is an identity we solve for A, B, C, and then use standard integrals. Another way is to do some algebra and cleverly write it as

$$
\frac{1}{6} \int_{0}^{1} \frac{1}{x+1} d x-\frac{1}{6} \int_{0}^{1} \frac{2 x-1}{x^{2}-x+1} d x+\frac{1}{2} \int_{0}^{1} \frac{1}{x^{2}-x+1} d x
$$

Anyway, these are some very standard methods that I hope you already are (or, going to be) familiar with them. The final answer is $\frac{1}{3} \log 2+\frac{\pi}{3 \sqrt{3}}$.
(d) Since $\binom{2 n}{n}=\prod_{k=1}^{n} \frac{n+k}{k}$, the given limit equals

$$
\begin{equation*}
\int_{0}^{1} \log \left(1+\frac{1}{x}\right) d x=\int_{1}^{2} \log x d x-\int_{0}^{1} \log x d x=(2 \log 2-1)-(-1)=\log 4 \tag{Ans}
\end{equation*}
$$

2. Evaluate the following integrals:

$$
\int_{1 / e}^{e}|\log x| d x, \int_{0}^{\pi / 2} \frac{1}{1+\tan ^{n} x} d x, \int_{0}^{\pi / 4} \frac{\sin x}{\sin x+\cos x} d x, \int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x
$$

Solution. The first one can be calculated as follows.

$$
\begin{align*}
\int_{1 / e}^{e}|\log x| d x & =\int_{1 / e}^{1}|\log x| d x+\int_{1}^{e}|\log x| d x \\
& =\int_{1 / e}^{1}-\log x d x+\int_{1}^{e} \log x d x \\
& =x-\left.x \log x\right|_{x=1 / e} ^{x=1}+x \log x-\left.x\right|_{x=1} ^{x=e}=2(1-1 / e) \tag{Ans}
\end{align*}
$$

For the next one, the result $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$ will help us, as follows.

$$
I=\int_{0}^{\pi / 2} \frac{1}{1+\tan ^{n} x} d x=\int_{0}^{\pi / 2} \frac{1}{1+\tan ^{n}(\pi / 2-x)} d x=\int_{0}^{\pi / 2} \frac{\tan ^{n} x}{1+\tan ^{n} x} d x
$$

Adding up these two expressions for I, we get $2 I=\int_{0}^{\pi / 2} 1 d x=\pi / 2 \quad \Longrightarrow \quad I=\pi / 4$. (Ans) To calculate the next one, we note that $(\sin x+\cos x)^{\prime}=\cos x-\sin x$. So, writing $2 \sin x=(\sin x+\cos x)-(\cos x-\sin x)$ does the trick:

$$
\begin{align*}
\int_{0}^{\pi / 4} \frac{\sin x}{\sin x+\cos x} d x & =\frac{1}{2} \int_{0}^{\pi / 4} \frac{2 \sin x}{\sin x+\cos x} d x \\
& =\frac{1}{2} \int_{0}^{\pi / 4} 1 d x-\frac{1}{2} \int_{0}^{\pi / 4} \frac{(\sin x+\cos x)^{\prime}}{\sin x+\cos x} d x \\
& =\frac{\pi}{8}-\frac{1}{2}[\log (\sin x+\cos x)]_{x=0}^{x=\pi / 4}=\frac{\pi}{8}-\frac{1}{4} \log 2 \tag{Ans}
\end{align*}
$$

Let us now calculate the last one.

$$
I_{1}=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x
$$

Adding up these two expressions for I_{1} we get

$$
\begin{equation*}
2 I_{1}=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x=\pi \int_{-1}^{1} \frac{1}{1+u^{2}} d u=\pi\left(\tan ^{-1}(1)-\tan ^{-1}(-1)\right) \tag{Ans}
\end{equation*}
$$

and hence $I_{1}=\pi^{2} / 4$.
3. Suppose f is continuous on $[0,1]$. Prove that

$$
\int_{0}^{\pi} x f(\sin x) d x=\pi \int_{0}^{\pi / 2} f(\sin x) d x
$$

Hence (or otherwise) calculate

$$
\int_{0}^{\pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x
$$

Solution. First we write

$$
I=\int_{0}^{\pi} x f(\sin x) d x=\int_{0}^{\pi}(\pi-x) f(\sin (\pi-x)) d x=\int_{0}^{\pi}(\pi-x) f(\sin x) d x
$$

and then adding up these two alternate expressions for the same integral, we get

$$
2 I=\pi \int_{0}^{\pi} f(\sin x) d x=2 \pi \int_{0}^{\pi / 2} f(\sin x) d x
$$

where in the last step we used $\int_{0}^{2 a} f(x) d x=\int_{0}^{a}(f(x)+f(2 a-x)) d x$.
Using the above formula/idea, we get

$$
\int_{0}^{\pi} \frac{x \sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x=\pi \int_{0}^{\pi / 2} \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x
$$

Now using $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$,

$$
I=\int_{0}^{\pi / 2} \frac{\sin ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x=\int_{0}^{\pi / 2} \frac{\cos ^{2 n} x}{\sin ^{2 n} x+\cos ^{2 n} x} d x=\frac{1}{2} \int_{0}^{\pi / 2} d x=\frac{\pi}{4}
$$

Therefore, the desired integral equals $\pi^{2} / 4$.
(Ans)
4. Prove the following inequality

$$
\int_{0}^{\pi}\left|\frac{\sin n x}{x}\right| d x \geq \frac{2}{\pi}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)
$$

Solution. First we substitute $y=n x$ to write

$$
\int_{0}^{\pi}\left|\frac{\sin n x}{x}\right| d x=\int_{0}^{n \pi}\left|\frac{\sin y}{y / n}\right| \frac{d y}{n}=\int_{0}^{n \pi}\left|\frac{\sin y}{y}\right| d y
$$

Now break the integral as the sum of integrals $\int_{0}^{\pi}, \int_{\pi}^{2 \pi}$, etc. as follows.

$$
\begin{aligned}
\int_{0}^{n \pi}\left|\frac{\sin y}{y}\right| d y & =\sum_{k=1}^{n} \int_{(k-1) \pi}^{k \pi} \frac{|\sin y|}{y} d y \\
& \geq \sum_{k=1}^{n} \int_{(k-1) \pi}^{k \pi} \frac{|\sin y|}{k \pi} d y \quad(\text { since }(k-1) \pi<y<k \pi \Longrightarrow 1 / y>1 / k \pi) \\
& =\sum_{k=1}^{n} \frac{1}{k \pi} \int_{0}^{\pi}|\sin y| d y=\frac{2}{\pi}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)
\end{aligned}
$$

as required.
Corollary. $\int_{0}^{\infty}\left|\frac{\sin y}{y}\right| d y=\lim _{T \rightarrow \infty} \int_{0}^{T}\left|\frac{\sin y}{y}\right| d y=\infty$. (Since $1+1 / 2+1 / 3+\cdots$ diverges.)
But, it is an interesting fact that $\int_{0}^{\infty} \frac{\sin y}{y} d y$ exists (which we will show in a later class) and, in fact, it equals $\pi / 2$.
5. For every positive integer n, evaluate the integrals

$$
\int_{0}^{\pi / 2} \sin ^{n} x d x, \int_{0}^{\pi / 2} \cos ^{n} x d x, \int_{0}^{\pi / 4} \tan ^{2 n} x d x, \text { and } \int_{0}^{\pi / 2} \frac{\sin (2 n+1) x}{\sin x} d x
$$

Solution. Let me do the first two, and leave the rest for you. For $n \geq 1$, define

$$
I_{n}=\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x
$$

For instance, $I_{0}=\pi / 2$, and $I_{1}=1$. How to calculate I_{n} for a general n ? The idea is to get a recursion for I_{n} and then solve that recursion. For $n>1$, we integrate by parts to get

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 2}(\sin x)^{n-1} \cdot \sin x d x \\
& =\left[(\sin x)^{n-1} \int \sin x d x\right]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \frac{d}{d x}(\sin x)^{n-1}\left(\int \sin x d x\right) d x \\
& =\left[-(\sin x)^{n-1} \cos x\right]_{0}^{\pi / 2}+\int_{0}^{\pi / 2}(n-1)(\sin x)^{n-2} \cos ^{2} x d x \\
& =0+\int_{0}^{\pi / 2}(n-1)(\sin x)^{n-2}\left(1-\sin ^{2} x\right) d x=(n-1)\left(I_{n-2}-I_{n}\right)
\end{aligned}
$$

Thus, $I_{n}=(n-1)\left(I_{n-2}-I_{n}\right)$, which can also be written as

$$
I_{n}=\frac{n-1}{n} I_{n-2}, n \geq 2
$$

Now, for an even n, say $n=2 k$ where $k \geq 1$, we have

$$
I_{2 k}=\frac{2 k-1}{2 k} I_{2 k-2}=\frac{2 k-1}{2 k} \frac{2 k-3}{2 k-2} I_{2 k-4}=\cdots=\frac{1 \times 3 \times \cdots \times(2 k-1)}{2 \times 4 \times \cdots \times 2 k} I_{0} .
$$

Similarly, for odd n, say $n=2 k+1$ where $k>1$, we have

$$
I_{2 k+1}=\frac{2 k}{2 k+1} I_{2 k-1}=\frac{2 k}{2 k+1} \frac{2 k-2}{2 k-1} I_{2 k-3}=\cdots=\frac{2 \times 4 \times \cdots \times 2 k}{3 \times 5 \times \cdots \times(2 k+1)} I_{1} .
$$

We can also write

$$
I_{n}= \begin{cases}\frac{(2 k-1)!!}{(2 k)!!} \frac{\pi}{2}=\binom{2 k}{k} \frac{\pi}{2^{2 k+1}} & \text { if } n=2 k \geq 0 \tag{3}\\ \frac{(2 k)!!}{(2 k+1)!!}=\frac{2^{2 k}}{2 k+1}\binom{2 k}{k}^{-1} & \text { if } n=2 k+1 \geq 1\end{cases}
$$

These integrals (I_{n}) are commonly known as Wallis' integrals.
6. For any $n \in \mathbb{N}$, evaluate the integral $\int_{0}^{1}\left(1-x^{2}\right)^{n} d x$ and hence calculate the following sum

$$
\frac{1}{1}\binom{n}{0}-\frac{1}{3}\binom{n}{1}+\frac{1}{5}\binom{n}{2}-\cdots+(-1)^{n} \frac{1}{2 n+1}\binom{n}{n} .
$$

Solution. Using the Binomial theorem,

$$
\left(1-x^{2}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(-x^{2}\right)^{k} .
$$

Integrating both sides, and noting that the RHS being a finite summation we can pass the integral sign inside the summation, we get

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\sum_{k=0}^{n}\binom{n}{k} \int_{0}^{1}\left(-x^{2}\right)^{k} d x=\sum_{k=0}^{n}\binom{n}{k} \frac{(-1)^{k}}{2 k+1}
$$

Now, we can calculate the integral on the LHS directly (using by parts or by substitution) and hence get an expression for the sum on the RHS.

$$
\int_{0}^{1}\left(1-x^{2}\right)^{n} d x=\int_{0}^{\pi / 2}\left(1-\sin ^{2} \theta\right)^{n} \cos \theta d \theta=\int_{0}^{\pi / 2}(\cos \theta)^{2 n+1} d \theta=\frac{2 \times 4 \times \cdots \times 2 k}{1 \times 3 \times \cdots \times(2 n+1)}
$$

where the last integral was evaluated using (3). Therefore,

$$
\begin{equation*}
\frac{1}{1}\binom{n}{0}-\frac{1}{3}\binom{n}{1}+\frac{1}{5}\binom{n}{2}-\cdots+(-1)^{n} \frac{1}{2 n+1}\binom{n}{n}=\frac{(2 n)!!}{(2 n+1)!!} \tag{Ans}
\end{equation*}
$$

7. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\int_{1}^{x} \frac{\log t}{1+t} d t$. Find all $x \in \mathbb{R}$ that satisfies the equation

$$
f(x)+f(1 / x)=2
$$

Solution. For any $x>1$, we calculate the following integral by substituting $u=1 / t$

$$
\int_{1}^{1 / x} \frac{\log t}{1+t} d t=\int_{1}^{x} \frac{\log (1 / u)}{1+1 / u} \frac{-1}{u^{2}} d u=\int_{1}^{x} \frac{\log u}{1+u} \frac{d u}{u}
$$

Therefore,

$$
\begin{equation*}
f(x)+f(1 / x)=\int_{1}^{x} \frac{\log t}{1+t} d t+\int_{1}^{x} \frac{\log t}{1+t} \frac{1}{t} d t=\int_{1}^{x} \frac{\log t}{t} d t=\left.\frac{1}{2}(\log t)^{2}\right|_{1} ^{x}=\frac{1}{2}(\log x)^{2} . \tag{Ans}
\end{equation*}
$$

So, $f(x)+f(1 / x)=2 \Longleftrightarrow(\log x)^{2}=4 \Longleftrightarrow \log x= \pm 2 \Longleftrightarrow x=e^{2}$ or e^{-2}.
8. Let f be continuous on \mathbb{R}. If $\int_{-a}^{a} f(x) d x=0$ holds for every $a \in \mathbb{R}$, show that f must be an odd function.
Solution. Using the formula $\int_{-a}^{a} f(x) d x=\int_{0}^{a}(f(x)+f(-x)) d x$, we get

$$
\int_{0}^{a} g(x) d x=0
$$

for all $a \in \mathbb{R}$ where $g(x)=f(x)+f(-x)$. In a previous exercise we saw that this implies $g \equiv 0$, which here forces f to be an odd function.
9. Let $f: \mathbb{R} \rightarrow(0, \infty)$ be a continuously differentiable function which satisfies $f^{\prime}(t) \geq \sqrt{f(t)}$ for all $t \in \mathbb{R}$. Show that for every $x \geq 1$,

$$
\sqrt{f(x)} \geq \sqrt{f(1)}+\frac{1}{2}(x-1)
$$

Solution. The derivative of \sqrt{x} is $\frac{1}{2} x^{1 / 2-1}=1 / 2 \sqrt{x}$. So, $\frac{d}{d x} \sqrt{f(x)}=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$. Now we can proceed in many ways. One way is to say that the function

$$
g(x)=\sqrt{f(x)}-\frac{1}{2} x
$$

has derivative

$$
g^{\prime}(x)=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}-\frac{1}{2} \geq 0
$$

hence g is increasing and therefore for any $x \geq 1$, we have $g(x) \geq g(1)$, which gives the desired inequality.

Another way: for any $t \geq 1$, we have

$$
\frac{f^{\prime}(t)}{2 \sqrt{f(t)}} \geq \frac{1}{2}
$$

which implies that

$$
\int_{1}^{x} \frac{1}{2} d t \leq \int_{1}^{x} \frac{f^{\prime}(t)}{2 \sqrt{f(t)}} d t=\int_{1}^{x}(\sqrt{f(t)})^{\prime} d t=\sqrt{f(x)}-\sqrt{f(1)}
$$

which gives us the desired inequality.
10. Let $f:[1, \infty) \rightarrow \mathbb{R}$ be a function satisfying $f(1)=1$, and

$$
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}}
$$

for every $x \geq 1$. Prove that $\lim _{x \rightarrow \infty} f(x)$ exists and this limit is less than $1+\pi / 4$.
Solution. First note that $f^{\prime}(x)>0$ so f is increasing. Hence for $x \geq 1$, we can say that $f(x) \geq f(1)=1$. Therefore,

$$
\begin{equation*}
f^{\prime}(x)=\frac{1}{x^{2}+f(x)^{2}} \leq \frac{1}{x^{2}+1} \text { for all } x \geq 1 \tag{4}
\end{equation*}
$$

Now

$$
f(x)-f(1)=\int_{1}^{x} f^{\prime}(t) d t \leq \int_{1}^{x} \frac{1}{1+t^{2}} d t=\tan ^{-1} x-\tan ^{-1} 1<\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4} .
$$

Since f is increasing and bounded above, we can say that $\lim _{x \rightarrow \infty} f(x)$ exists, and from the above inequalities, it is immediate that the limit should be less than or equal to $\pi / 4$.

But how to claim that the limit is strictly less than $\pi / 4$? Showing that is quite tricky, because even if you have $f(x)<g(x)$ for all x, taking limit as $x \rightarrow \infty$ (or $x \rightarrow a$) would change the $<$ sign to a \leq sign. Here we adopt the following approach.
If f never crosses c where $1<c<1+\pi / 4$ then it is trivial that $\lim _{x \rightarrow \infty} f(x) \leq c<1+\pi / 4$. Else, $f\left(x_{0}\right)>c$ for some $x_{0}>1$, then $f(x) \geq f\left(x_{0}\right)>c$ for all $x>x_{0}$, and hence

$$
f^{\prime}(t)=\frac{1}{t^{2}+f(t)^{2}} \leq \frac{1}{t^{2}+c^{2}}, \quad \text { for } t \geq x_{0}
$$

Integrating this inequality from x_{0} to x and integrating (4) from 1 to x_{0}, we obtain

$$
f(x)-f(1) \leq \int_{1}^{x_{0}} \frac{1}{t^{2}+1} d t+\int_{x_{0}}^{x} \frac{1}{t^{2}+c^{2}} d t
$$

for every $x>x_{0}$. Letting $x \rightarrow \infty$ here, we get

$$
\lim _{x \rightarrow \infty} f(x) \leq 1+\int_{1}^{x_{0}} \frac{1}{1+t^{2}} d t+\int_{x_{0}}^{\infty} \frac{1}{t^{2}+c^{2}} d t<1+\int_{1}^{\infty} \frac{1}{t^{2}+1} d t=1+\frac{\pi}{4}
$$

11. Let $f(x)=x^{3}-\frac{3}{2} x^{2}+x+\frac{1}{4}$. For every $n \in \mathbb{N}$ let f^{n} denote f composed n-times, i.e., $f^{[n]}(x)=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { times }}(x)$. Evaluate $\int_{0}^{1} f^{2020}(x) d x$.
Solution. First observe that $f(x)+f(1-x)=1$ for every $x \in \mathbb{R}$. Then note that

$$
f(f(1-x))=f(1-f(x))=1-f(f(x))
$$

In fact, you can do induction on n to show that if g be f composed with itself n times, then g also satisfies $g(x)+g(1-x)=1$. Hence, for any $n \geq 1$, we can write

$$
\begin{equation*}
I=\int_{0}^{1} f^{[n]}(x) d x=\int_{0}^{1} f^{[n]}(1-x) d x=\int_{0}^{1}\left(1-f^{[n]}(x)\right) d x \tag{Ans}
\end{equation*}
$$

and then add up these two alternate expressions for I to show that $I=1 / 2$.
12. Suppose that $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous. Define $a_{n}=\int_{0}^{1} f(x+n) d x$, for every $n \geq 0$. Suppose also that $\lim _{n \rightarrow \infty} a_{n}=a$. Find the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(n x) d x
$$

Solution. We observe that

$$
\int_{0}^{1} f(n x) d x=\frac{1}{n} \int_{0}^{n} f(y) d y=\frac{1}{n} \sum_{k=0}^{n-1} \int_{k}^{k+1} f(y) d y=\frac{1}{n} \sum_{k=0}^{n-1} \int_{0}^{1} f(u+k) d u=\frac{1}{n} \sum_{k=0}^{n-1} a_{k} .
$$

Now you have to use the following fact: if $\left(a_{n}\right)_{n \geq 0}$ be a sequence that converges to a, then the sequence $\left(b_{n}\right)_{n \geq 1}$ defined by

$$
\begin{equation*}
b_{n}=\frac{1}{n} \sum_{k=0}^{n-1} a_{k} \tag{Ans}
\end{equation*}
$$

also converges to a. This tells us that the desired limit also equals a.
Do you recall how to prove the fact used in the above proof? We just have to write

$$
\left|b_{n}-a\right|=\left|\frac{1}{n} \sum_{k=0}^{n-1}\left(a_{k}-a\right)\right| \leq \frac{1}{n} \sum_{k=0}^{n-1}\left|\left(a_{k}-a\right)\right|
$$

and truncate the sum at N where N is such that $\left|a_{k}-a\right|<\varepsilon / 2$ holds for every $k \geq N$. Then we would have

$$
\left|b_{n}-a\right| \leq \frac{1}{n} \sum_{k=0}^{N-1}\left|\left(a_{k}-a\right)\right|+\frac{1}{n} \sum_{k=N}^{n-1}\left|\left(a_{k}-a\right)\right| \leq \frac{B}{N}+\frac{n-N}{n} \frac{\varepsilon}{2}
$$

where $B=\sum_{k=0}^{N-1}\left|a_{k}-a\right|$. It then follows that taking n large enough so that $B / n<\varepsilon / 2$ also holds, one obtains $\left|b_{n}-a\right|<\varepsilon$ for all sufficiently large n, which completes the proof.
13. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function. Prove that,

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f(x) \sin (n x) d x=0
$$

Solution. Applying integration by parts, we get

$$
\begin{align*}
\int_{a}^{b} f(x) \sin (n x) d x & =\left[f(x) \int \sin (n x) d x\right]_{a}^{b}-\int_{a}^{b}\left(f^{\prime}(x) \int \sin (n x) d x\right) d x \\
& =\frac{f(a) \cos n a-f(b) \cos n b}{n}-\frac{1}{n} \int_{a}^{b} f^{\prime}(x) \cos (n x) d x
\end{align*}
$$

Now, since f is continuously differentiable on $[a, b]$, we can say that f^{\prime} is bounded on $[a, b]$. In other words, we can find an $M>0$ such that $\left|f^{\prime}(x)\right|<M$ holds for every $x \in[a, b]$. So, $0 \leq\left|f^{\prime}(x) \cos n x\right| \leq M$ also holds for $x \in[a, b]$ and therefore we obtain from (\dagger) that

$$
\begin{aligned}
0 \leq\left|\int_{a}^{b} f(x) \sin (n x) d x\right| & \leq\left|\frac{f(a) \cos n a-f(b) \cos n b}{n}\right|+\left|\frac{1}{n} \int_{a}^{b} f^{\prime}(x) \cos (n x) d x\right| \\
& \leq \frac{|f(a) \cos n a|+|f(b) \cos n b|}{n}+\frac{1}{n} \int_{a}^{b}\left|f^{\prime}(x) \cos (n x)\right| d x \\
& \leq \frac{|f(a)|+|f(b)|}{n}+\frac{M(b-a)}{n} \rightarrow 0, \text { as } n \rightarrow \infty .
\end{aligned}
$$

This proves that the desired limit is 0 .

