
Exercise 1 on Integration

1. Define f(x) =

∫ 1

0

|t − x|t dt, for x ∈ R. Sketch the graph of f(x). What is the minimum

value of f(x)?

2. For any positive integer n, let C(n) denote the number of points which have integer coor-

dinates and lie inside the circle x2 + y2 = n2. Show that the limit

lim
n→∞

C(n)

n2

exists and also evaluate this limit. Can you explain the result intuitively?

3. Let f, g be polynomials of degree n such that

∫ 1

0

xkf(x)dx =

∫ 1

0

xkg(x)dx holds for each

k = 0, 1, . . . , n. Show that f = g.

4. Let f, g be continuous and positive functions defined on [0, 1] satisfying∫ 1

0

f(x)dx =

∫ 1

0

g(x)dx.

Define yn =

∫ 1

0

(f(x))n+1

(g(x))n
dx, for every integer n ≥ 0. Show that {yn}n≥0 is an increasing

sequence.

5. Suppose that f is integrable on [a, b]. Define

F (x) =

∫ x

a

f(t)dt, for a ≤ x ≤ b.

Then, (i) F is continuous on [a, b], and (ii) if f is continuous at c ∈ [a, b], then F will be

differentiable at c, with F ′(c) = f(c).

6. If f is differentiable on [a, b] such that f ′ is continuous on [a, b], then∫ b

a

f ′(x)dx = f(b)− f(a).

7. If f is continuous on [a, b], show that

∫ b

a

f(t)dt = f(c)(b−a) must hold for some c ∈ (a, b).

8. Let f : [0, 1] → R be a continuous function such that

∫ 1

0

f(x)dx = 1. Show that there

exists a point c ∈ (0, 1) such that f(c) = 3c2.

9. Prove the inequalities:
π2

9
≤
∫ π/2

π/6

x

sinx
dx ≤ 2π2

9
.
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Solutions to Exercise 1

1. Let f(x) =

∫ 1

0

|t − x|t dt, defined for x ∈ R. Sketch the graph of f(x). What is the

minimum value of f(x)?

Solution. Note that for 0 ≤ x ≤ 1, we have

f(x) =

∫ 1

0

|t− x|t dt =

∫ x

0

(x− t)t dt+

∫ 1

x

(t− x)t dt =
x3

3
− x

2
+

1

3
.

For x < 0,

f(x) =

∫ 1

0

|t− x|t dt =

∫ 1

0

(t− x)t dt =
t3

3
− xt

2

2

∣∣∣1
0

=
1

3
− x

2
.

Finally, for x > 1,

f(x) =

∫ 1

0

|t− x|t dt =

∫ 1

0

(x− t)t dt = x
t2

2
− t3

3

∣∣∣1
0

=
x

2
− 1

3
.

It is quite easy to draw the graph of this function f(x), because for x ∈ [0, 1] it is just a

cubic polynomial and for both x ≤ 0 and x ≥ 1 it is a straight line.

The minimum value can be determined by differentiating f . It turns out that f attains its

global minimum at x = 1/
√

2, and the minimum value is 1
3
(1− 1√

2
). �

2. For any positive integer n, let C(n) denote the number of points which have integer coor-

dinates and lie inside the circle x2 + y2 = n2. Show that the limit

lim
n→∞

C(n)

n2

exists and also evaluate this limit. Can you explain the result intuitively?

Solution. By symmetry, it is enough to find the number of lattice points (points having

integer coordinates) in the first quadrant. This can be calculated by first fixing the x-

coordinate to be k and then summing up for k = 1, 2, . . . , n. Note that

#
{

(x, y) : x = k, y ∈ Z, y ≥ 0 and x2 + y2 ≤ n2
}

= b
√
n2 − k2c.
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Hence,

C(n) = 4
n∑
k=1

b
√
n2 − k2c+ 1

where the last +1 is for the origin (0, 0). Next, in order to calculate the limit of C(n)/n2

as n → ∞, observe that it is enough to calculate the limit of n−2
∑n

k=1b
√
n2 − k2c and

we can handle the floor function using sandwich principle.The inequality x− 1 ≤ bxc ≤ x

produces the following bounds

1

n2

(
n∑
k=1

√
n2 − k2 − n

)
≤ 1

n2

n∑
k=1

b
√
n2 − k2c ≤ 1

n2

(
n∑
k=1

√
n2 − k2

)
.

Observe that

lim
n→∞

1

n2

(
n∑
k=1

√
n2 − k2 − n

)
= lim

n→∞

1

n2

n∑
k=1

√
n2 − k2 =

∫ 1

0

√
1− x2 dx.

This integral calculates the area of one quarter of the unit circle, hence equals π/4. (Al-

ternately, you can use integration by parts.) Finally, applying the Sandwich theorem we

conclude that

lim
n→∞

C(n)

n2
= lim

n→∞

4

n2

n∑
k=1

b
√
n2 − k2c = 4× π

4
= π.

This is intuitive, because the area of the circle x2 + y2 ≤ n2 being πn2 (square units), it

should include approximately πn2 many unit squares. The above limit makes this idea

precise.

3. Let f, g be polynomials of degree n such that

∫ 1

0

xkf(x)dx =

∫ 1

0

xkg(x)dx holds for each

k = 0, 1, . . . , n. Show that f = g.

Solution. Since h(x) = f(x) − g(x) is a polynomial of degree less than or equal to n, and

h satisfies ∫ 1

0

xkh(x)dx = 0 for each k = 0, 1, . . . , n,

we can easily deduce that ∫ 1

0

h(x)2dx = 0.

But h(x)2 is a non-negative and continuous function, so the above equation can hold if and

only if h is identically zero on [0, 1]. Therefore, f(x) = g(x) for every x ∈ [0, 1]. Since f

and g are polynomials, this is enough to conclude that f = g. �
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4. Let f, g be continuous and positive functions defined on [0, 1] satisfying∫ 1

0

f(x)dx =

∫ 1

0

g(x)dx.

Define yn =

∫ 1

0

(f(x))n+1

(g(x))n
dx, for every integer n ≥ 0. Show that {yn}n≥0 is an increasing

sequence.

Solution. To start with, note that y0 =
∫ 1

0
f =

∫ 1

0
g, and y1 =

∫ 1

0
f 2/g. How to show

y0 ≤ y1? Well, the Cauchy-Schwarz inequality gives(∫ 1

0

f 2

g

)(∫ 1

0

g

)
≥
(∫ 1

0

f

)2

=⇒ y1y0 ≥ y20 =⇒ y1 ≥ y0.

Let’s proceed by strong induction. Suppose that yk ≤ yk+1 holds for all k ≤ n − 1. How

can we show that yn ≤ yn+1. Cauchy-Schwarz inequality gives(∫ 1

0

fn+2

gn+1

)(∫ 1

0

fn

gn−1

)
≥
(∫ 1

0

fn+1

gn

)2

which tells us that yn+1yn−1 ≥ y2n. Hence yn+1/yn ≥ yn/yn−1 and yn/yn−1 ≥ 1 holds by

induction hypothesis. This completes the induction and hence the proof. �

5. Suppose that f is integrable on [a, b]. Define

F (x) =

∫ x

a

f(t) dt, for a ≤ x ≤ b.

Then, (i) F is continuous on [a, b], and (ii) if f is continuous at c ∈ [a, b], then F will be

differentiable at c, with F ′(c) = f(c).

Solution. To be discussed in the next class. �

6. If f is differentiable on [a, b] such that f ′ is continuous on [a, b], then∫ b

a

f ′(x) dx = f(b)− f(a).

Solution. Define F (x) =
∫ x
a
f ′(t) dt for t ∈ [a, b]. Then by the previous exercise, we can say

that F is differentiable on [a, b], with F ′(t) = f ′(t) for every t ∈ [a, b]. In other words, the

function g = F − f will be a differentiable function having derivative equal to 0 on entire

[a, b], which implies that g must be a constant function (this may be justified using MVT).

Thus, F (x) − f(x) = c for every x ∈ [a, b]. Putting x = a, and using F (a) = 0 (from its

definition), we get that c = −f(a). Therefore,
∫ b
a
f ′(t) dt = F (b) = f(b) + c = f(b)− f(a),

which completes the proof. �
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7. If f is continuous on [a, b], show that

∫ b

a

f(t) dt = f(c)(b−a) must hold for some c ∈ (a, b).

Solution. Easy. Just apply Rolle’s theorem or the Mean Value Theorem on the function

F (x) =

∫ x

a

f(t)dt, x ∈ [a, b]

which is differentiable here since f is continuous. �

8. Let f : [0, 1] → R be a continuous function such that

∫ 1

0

f(x) dx = 1. Show that there

exists a point c ∈ (0, 1) such that f(c) = 3c2.

Solution. Define

g(x) =

∫ x

0

f(t) dt− x3, x ∈ [0, 1].

Note that g(1) = g(0) = 0, and invoking the FTC we can say that g is continuous on

[0, 1] and differentiable on (0, 1). Hence we can apply Rolle’s theorem on g, which gives the

desired conclusion. �

9. Prove the following inequalities:

π2

9
≤
∫ π/2

π/6

x

sinx
dx ≤ 2π2

9
.

Solution. Using the fact that f(x) = sinx being an increasing function on [0, π/2], for

π/6 < x < π/2 we have 1/2 < sinx < 1. Hence∫ π/2

π/6

x

1
dx ≤

∫ π/2

π/6

x

sinx
dx ≤

∫ π/2

π/6

x

1/2
dx.

Observing that

∫ π/2

π/6

xdx =
π2

9
, we are done! �
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