Introductory Problems on Derivatives

Aditya Ghosh

Last updated: March, 2021

1. Find the derivatives (if they exist) of the following functions:
(a) $f(x)=x|x|, x \in \mathbb{R}$
(c) $f(x)=\lfloor x\rfloor \sin ^{2}(\pi x), x \in \mathbb{R}$
(b) $f(x)=\log |x|, x \in \mathbb{R} \backslash\{0\}$
(d) $f(x)=(x-\lfloor x\rfloor) \sin ^{2}(\pi x), x \in \mathbb{R}$
2. Study the differentiability of the following functions

$$
f(x)=\left\{\begin{array}{ll}
x \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}, \quad g(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}\right.
$$

3. Study differentiability of the following function

$$
f(x)= \begin{cases}\tan ^{-1} x & \text { if }|x| \leq 1 \\ \frac{\pi}{4} \frac{|x|}{x}+\frac{x-1}{2} & \text { if }|x|>1\end{cases}
$$

4. Assume that f and g are differentiable at a. Find the following limits
(a) $\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}$,
(b) $\lim _{x \rightarrow a} \frac{f(x) g(a)-f(a) g(x)}{x-a}$,
(c) $\lim _{n \rightarrow \infty} n\left(f\left(a+\frac{1}{n}\right)+f\left(a+\frac{2}{n}\right)+\cdots+f\left(a+\frac{k}{n}\right)-k f(a)\right)$.
5. Assume that $f(0)=0$ and that $f(x)$ is differentiable at $x=0$. Find the value of

$$
\lim _{x \rightarrow 0} \frac{1}{x}\left(f(x)+f\left(\frac{x}{2}\right)+f\left(\frac{x}{3}\right)+\cdots+f\left(\frac{x}{2019}\right)\right) .
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function continuous at 0 , such that $\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=\ell$. Prove that $f(x)$ must be differentiable at $x=0$ and also find $f^{\prime}(0)$.
7. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are n real numbers such that

$$
\left|a_{1} \sin x+a_{2} \sin 2 x+\cdots+a_{n} \sin n x\right| \leq|\sin x|
$$

holds for every $x \in \mathbb{R}$. Prove that, $\left|a_{1}+2 a_{2}+\cdots+n a_{n}\right| \leq 1$.
8. Let f and g be two functions such that $g(f(x))$ is well-defined (in an open neighborhood of a). Suppose that $f^{\prime}(a)$ and $g^{\prime}(f(a))$ both exist. The goal of this exercise is to prove the chain rule: $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)$.
(a) Assuming that $f(x) \neq f(a)$ holds for all $x \in(a-\epsilon, a+\epsilon) \backslash\{a\}$ (for some $\epsilon>0$), prove that $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)$.
(b) Define

$$
Q(x)= \begin{cases}\frac{g(f(x))-g(f(a))}{f(x)-f(a)} & \text { if } f(x) \neq f(a) \\ g^{\prime}(f(a)) & \text { if } f(x)=f(a)\end{cases}
$$

Show that

$$
\frac{g(f(x))-g(f(a))}{x-a}=Q(x) \cdot \frac{f(x)-f(a)}{x-a}
$$

holds for every $x \neq a$, regardless of whether $f(x)=f(a)$ or not.
(c) Show that $\lim _{x \rightarrow a} Q(x)=g^{\prime}(f(a))$.
(d) Hence complete the proof of $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a)$.
9. Give an example where $g^{\prime}(f(a))$ does not exist, but $(g \circ f)^{\prime}(a)$ exists.
10. Suppose that $g \circ f$ is differentiable at a, g is differentiable at $f(a)$, with $g^{\prime}(f(a)) \neq 0$, and f is continuous at a. Then show that f must be differentiable at a and

$$
f^{\prime}(a)=\frac{(g \circ f)^{\prime}(a)}{g^{\prime}(f(a))} .
$$

11. (Inverse Function Theorem) Let $g: C \rightarrow D$ be an invertible function, with inverse g^{-1} : $D \rightarrow C$. Suppose that $c \in C$, and $d \in D$ are such that $d=g(c)$. If g is differentiable at c, g^{-1} is continuous at d, and $g^{\prime}(c) \neq 0$, then show that g^{-1} must be differentiable at d and $\left(g^{-1}\right)^{\prime}(d)=1 / g^{\prime}(c)$.
12. Show that the conclusion of the last problem does not hold if $g^{\prime}(c)=0$.
13. Calculate the limit $\lim _{n \rightarrow \infty}\left(\frac{f\left(a+\frac{1}{n}\right)}{f(a)}\right)^{n}$.
14. Determine, with proof, the value of $\lim _{n \rightarrow \infty} \tan ^{n}\left(\frac{\pi}{4}+\frac{1}{n}\right)$.
15. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Show that,

$$
\lim _{x \rightarrow 0}\left(\frac{a_{1}^{x}+a_{2}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x}=\sqrt[n]{a_{1} a_{2} \cdots a_{n}}
$$

16. The goal of this exercise is to show that $\frac{d}{d x}\left(x^{r}\right)$ is $r x^{r-1}$ for any $r \in \mathbb{Q}$.
(a) Show (from definition) that the derivative of x^{n} is $n x^{n-1}$ where $n \in \mathbb{Z}$.
(b) For any $n \in \mathbb{N}$, find the derivative of $x^{1 / n}$. (Note, the function $x^{1 / n}$ is usually restricted to positive values of x only, in order to avoid things like $(-1)^{1 / 4}$.)
(c) Show that the derivative of x^{r} is $r x^{r-1}$, for any rational number r.
17. Define $f(x)=x^{\sqrt{3}}$ for $x>0$. Is it true that $f^{\prime}(x)=\sqrt{3} x^{\sqrt{3}-1}$? If yes, can you give a complete proof of this?
18. Suppose $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $c \in(a, b)$. Prove that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c-h)}{2 h}
$$

exists and equals $f^{\prime}(c)$. Give an example of a function where this limit exists, but the function is not differentiable at $x=c$.
19. Let f be differentiable at a and let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be two sequences converging to a such that $x_{n}<a<z_{n}$ for every $n \geq 1$. Prove that,

$$
\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)-f\left(x_{n}\right)}{z_{n}-x_{n}}=f^{\prime}(a) .
$$

(Hint: Think intuitively; what does the above quotient represent?)
20. Let f be differentiable at a and let $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ be two sequences converging to a such that $x_{n} \neq a, z_{n} \neq a$ and $x_{n} \neq z_{n}$ for every $n \geq 1$. Furthermore, assume that the limit

$$
\lim _{n \rightarrow \infty} \frac{f\left(z_{n}\right)-f\left(x_{n}\right)}{z_{n}-x_{n}}
$$

exists (finitely). Is it necessary that the above limit equals $f^{\prime}(a)$?
21. Find a function which is differentiable everywhere except at exactly 5 points.
22. Define a function $f:(0,2) \rightarrow \mathbb{R}$ as: $f(x)=\left\{\begin{array}{ll}x^{2} & \text { if } x \text { is rational } \\ 2 x-1 & \text { if } x \text { is irrational }\end{array}\right.$. Determine all points where f is differentiable.
23. Can you give an example of a function which is differentiable at exactly 3 points?
24. Construct a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not differentiable at the integers only (i.e., $f^{\prime}(a)$ exists $\Longleftrightarrow a \notin \mathbb{Z}$).
25. Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable at the integers only (i.e., $f^{\prime}(a)$ exists $\Longleftrightarrow a \in \mathbb{Z})$.
26. There exist functions that are continuous on \mathbb{R} but not differentiable at any point! For example, Weierstrass function satisfies this property. Let $W(x)$ be any function (e.g., Weierstrass function) which is continuous everywhere and differentiable nowhere. Show that the function $\widetilde{W}(x)=(\sin \pi x) W(x)$ is an example of a continuous function which is differentiable exactly at the integers (i.e., $\widetilde{W}^{\prime}(a)$ exists iff $a \in \mathbb{Z}$).
27. (Leibnitz rule) Show that for any $n \in \mathbb{N}$, the n-th derivative of $(f g)(x)=f(x) g(x)$ is given by

$$
\left.\frac{d^{n}}{d x^{n}}(f g)\right|_{x=a}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)}(a) g^{(n-k)}(a)
$$

Of course the above equation makes sense only when $f(x), g(x)$ are both n-times differentiable. (Here $f^{(k)}(a)$ denotes the k-th derivative of f evaluated at $x=a$.)
28. Suppose that $x f(x)=\log x$ holds for all $x>0$. Show that

$$
f^{(n)}(1)=(-1)^{n-1} n!\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)
$$

where $f^{(n)}(a)$ denotes the n-th derivative of f evaluated at $x=a$.
29. Suppose that f, g are two differentiable functions such that $f(x)>g(x)$ holds for every $x \in \mathbb{R}$. Is it necessary that $f^{\prime}(x) \geq g^{\prime}(x)$?
30. Suppose that f is differentiable (on an interval I). Is it possible that
(a) f is unbounded on I, but f^{\prime} is bounded?
(b) f is bounded on I, but f^{\prime} is unbounded?
31. (Lagrange's interpolation) Let $P(x)$ be a polynomial of degree n with n distinct real roots r_{1}, \ldots, r_{n} and let $Q(x)$ be a polynomial of degree at most $n-1$. Prove that,

$$
\frac{Q(x)}{P(x)}=\sum_{k=1}^{n} \frac{Q\left(r_{k}\right)}{P^{\prime}\left(r_{k}\right)\left(x-r_{k}\right)}
$$

holds for any $x \in \mathbb{R} \backslash\left\{r_{1}, \ldots, r_{n}\right\}$.

