Ramanujan School of Mathematics
 Class Test on Calculus

Sept 2019

Total marks: $10 \times 5=50$
Time: 2 hours.
Attempt all the questions. Answers without proper explanations will fetch zero. Show all your rough work - partial solutions may be rewarded. You can use any theorem/result without proving it again; but you have to state it properly.

1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $f(x) \neq x$ for every $x \in \mathbb{R}$. Is it possible that there exists some $c \in \mathbb{R}$ such that $f(f(c))=c$?
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function satisfying $f(2 x)=3 f(x)$ for every $0 \leq x \leq 1 / 2$. If f is bounded, show that $\lim _{x \rightarrow 0+} f(x)=f(0)$.
3. Determine, with proof, whether the following statements are true or false: (If true then provide a proof, else provide a counter-example)
(a) If $\lim _{x \rightarrow 0} f(x)=c$ then $\lim _{x \rightarrow 0} f(\sin x)=c$.
(b) If $\lim _{x \rightarrow 0} f(\sin x)=c$ then $\lim _{x \rightarrow 0} f(x)=c$.
4. Determine, with proof, the value of the following limit

$$
\lim _{n \rightarrow \infty} \tan ^{n}\left(\frac{\pi}{4}+\frac{1}{n}\right)
$$

5. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions such that given any two points $x_{1}<x_{2}$, there exists a point x_{3} between x_{1} and x_{2} such that $f\left(x_{3}\right)=g\left(x_{3}\right)$. Show that $f(x)=g(x)$ for every $x \in \mathbb{R}$.

Do not cheat to yourself. All the best!

Solutions

1. If $f(x)-x$ changes its sign then by continuity there exists a point x_{0} such that $f\left(x_{0}\right)=x_{0}$. But since that is not allowed, we deduce that $f(x)-x$ is either positive for all x, or negative for all x. When $f(x)>x$ for all x, we find that

$$
f(f(x))>f(x)>x
$$

And when $f(x)<x$ for all x, we find that

$$
f(f(x))<f(x)<x
$$

Thus in both the cases, we cannot have a solution to the equation $f(f(x))=x$.
2. We are given that $f(2 x)=3 f(x)$ for every $x \in[0,1 / 2]$. This yields $f(0)=0$. Also deduce that for any natural number n,

$$
\begin{equation*}
f\left(2^{n} x\right)=3^{n} f(x) \text { for every } x \in\left[0,1 / 2^{n}\right] \tag{*}
\end{equation*}
$$

Since f is bounded, we can assume that

$$
|f(x)| \leq M \text { for every } x \in[0,1]
$$

for some fixed $M>0$. Now, let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in $[0,1]$ such that $x_{n} \rightarrow 0^{+}$. Our goal is to show that for any such sequence, $f\left(x_{n}\right) \rightarrow f(0)=0$. Given any $\varepsilon>0$, we take $k \in \mathbb{N}$ (sufficiently large) such that

$$
M / 3^{k}<\varepsilon
$$

Since $x_{n} \rightarrow 0^{+}$, for all sufficiently large n, say for $n \geq N$, it holds that

$$
0 \leq x_{n} \leq 1 / 2^{k}
$$

It follows from $(*)$ that for any $n \geq N$,

$$
\left|f\left(x_{n}\right)\right|=\frac{\left|f\left(2^{k} x_{n}\right)\right|}{3^{k}} \leq \frac{M}{3^{k}}<\varepsilon
$$

This implies, from the ε-definition of limit, that $f\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
(Note, a crucial part of the solution is to first choose k and then choose N.)
3. Both are true. We use the result that $|\sin x| \leq|x|$ for every $x \in \mathbb{R}$.
(a) If $\lim _{x \rightarrow 0} f(x)=c$, then for any $\varepsilon>0$ there exists $\delta>0$ such that $0<|x|<\delta$ implies $|f(x)-c|<\varepsilon$. Since $|\sin x| \leq|x|$, we can see that $|x|<\delta \Longrightarrow|\sin x|<\delta$ which further implies $|f(\sin x)-c|<\varepsilon$.
(b) If $\lim _{x \rightarrow 0} f(\sin x)=c$, then for any $\varepsilon>0$ there exists $\delta>0$ such that $0<$ $|x|<\delta$ implies $|f(\sin x)-c|<\varepsilon$. We may assume w.l.o.g. that $\delta<\pi / 2$. The idea is to put $y=\sin x$, i.e., $x=\sin ^{-1} y$. Take $\delta_{1}=\sin \delta \in(0,1)$. Since $\sin (\cdot)$ is strictly increasing on $(-\pi / 2, \pi / 2)$, for $y=\sin x$ we can say that $0<|\sin x|<\sin \delta \Longrightarrow 0<|x|<\delta$ which further implies that $|f(\sin x)-c|<\varepsilon$. Thus, for $0<|y|<\delta_{1}=\sin \delta$ we have $|f(y)-c|<\varepsilon$.
4. The key idea is to take logarithm (with base e, of course!). Let us denote

$$
A_{n}=\tan ^{n}\left(\frac{\pi}{4}+\frac{1}{n}\right), n \geq 1
$$

Observe that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \log A_{n} & =\lim _{n \rightarrow \infty} n \log \tan \left(\frac{\pi}{4}+\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} n \log \left(\frac{1+\tan \frac{1}{n}}{1-\tan \frac{1}{n}}\right) \\
& =\lim _{n \rightarrow \infty} n \log \left(1+\frac{2 \tan \frac{1}{n}}{1-\tan \frac{1}{n}}\right) \\
& =\lim _{n \rightarrow \infty} n \frac{2 \tan \frac{1}{n}}{1-\tan \frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2 \tan \frac{1}{n}}{\frac{1}{n}}=2 .
\end{aligned}
$$

Since $x \mapsto e^{x}$ is a continuous map, the desired limit is

$$
\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} e^{\log A_{n}}=e^{2}
$$

5. Fix any $y \in \mathbb{R}$. For any natural number $n \geq 1$ we can use the given property with $x_{1}=y-\frac{1}{n}$ and $x_{2}=y+\frac{1}{n}$ to say that there exists $y_{n} \in\left[y-\frac{1}{n}, y+\frac{1}{n}\right]$ such that $f\left(y_{n}\right)=g\left(y_{n}\right)$. Since

$$
y-\frac{1}{n} \leq y_{n} \leq y+\frac{1}{n} \text { for every } n \geq 1
$$

Sandwich applies and tells us that $y_{n} \rightarrow y$ as $n \rightarrow \infty$. But we have

$$
f\left(y_{n}\right)=g\left(y_{n}\right) \text { for every } n \geq 1
$$

Letting $n \rightarrow \infty$ here, and using the continuity of f and g we can conclude that

$$
f(y)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{n \rightarrow \infty} g\left(y_{n}\right)=g(y)
$$

