Ramanujan School of Mathematics

Class Test on Calculus

Sept 2019

Total marks: $10 \times 5 = 50$

Time: 2 hours.

Attempt all the questions. Answers without proper explanations will fetch zero. Show all your rough work – partial solutions may be rewarded. You can use any theorem/result without proving it again; but you have to state it properly.

- 1. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that $f(x) \neq x$ for every $x \in \mathbb{R}$. Is it possible that there exists some $c \in \mathbb{R}$ such that f(f(c)) = c?
- 2. Let $f : [0,1] \to \mathbb{R}$ be a function satisfying f(2x) = 3f(x) for every $0 \le x \le 1/2$. If f is bounded, show that $\lim_{x \to 0+} f(x) = f(0)$.
- 3. Determine, with proof, whether the following statements are true or false: (If true then provide a proof, else provide a counter-example)

(a) If
$$\lim_{x\to 0} f(x) = c$$
 then $\lim_{x\to 0} f(\sin x) = c$.
(b) If $\lim_{x\to 0} f(\sin x) = c$ then $\lim_{x\to 0} f(x) = c$.

4. Determine, with proof, the value of the following limit

$$\lim_{n \to \infty} \tan^n \left(\frac{\pi}{4} + \frac{1}{n} \right).$$

5. Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions such that given any two points $x_1 < x_2$, there exists a point x_3 between x_1 and x_2 such that $f(x_3) = g(x_3)$. Show that f(x) = g(x) for every $x \in \mathbb{R}$.

Do not cheat to yourself. All the best!

Teacher: Aditya Ghosh

Solutions

1. If f(x) - x changes its sign then by continuity there exists a point x_0 such that $f(x_0) = x_0$. But since that is not allowed, we deduce that f(x) - x is either positive for all x, or negative for all x. When f(x) > x for all x, we find that

$$f(f(x)) > f(x) > x.$$

And when f(x) < x for all x, we find that

$$f(f(x)) < f(x) < x.$$

Thus in both the cases, we cannot have a solution to the equation f(f(x)) = x.

2. We are given that f(2x) = 3f(x) for every $x \in [0, 1/2]$. This yields f(0) = 0. Also deduce that for any natural number n,

$$f(2^n x) = 3^n f(x)$$
 for every $x \in [0, 1/2^n]$. (*)

Since f is bounded, we can assume that

$$|f(x)| \leq M$$
 for every $x \in [0, 1]$

for some fixed M > 0. Now, let $(x_n)_{n\geq 1}$ be a sequence in [0,1] such that $x_n \to 0^+$. Our goal is to show that for **any** such sequence, $f(x_n) \to f(0) = 0$. Given any $\varepsilon > 0$, we take $k \in \mathbb{N}$ (sufficiently large) such that

$$M/3^k < \varepsilon.$$

Since $x_n \to 0^+$, for all sufficiently large n, say for $n \ge N$, it holds that

$$0 \le x_n \le 1/2^k.$$

It follows from (*) that for any $n \ge N$,

$$|f(x_n)| = \frac{|f(2^k x_n)|}{3^k} \le \frac{M}{3^k} < \varepsilon.$$

This implies, from the ε -definition of limit, that $f(x_n) \to 0$ as $n \to \infty$.

(Note, a crucial part of the solution is to first choose k and then choose N.)

- 3. Both are true. We use the result that $|\sin x| \le |x|$ for every $x \in \mathbb{R}$.
 - (a) If $\lim_{x\to 0} f(x) = c$, then for any $\varepsilon > 0$ there exists $\delta > 0$ such that $0 < |x| < \delta$ implies $|f(x) c| < \varepsilon$. Since $|\sin x| \le |x|$, we can see that $|x| < \delta \implies |\sin x| < \delta$ which further implies $|f(\sin x) c| < \varepsilon$.

- (b) If $\lim_{x\to 0} f(\sin x) = c$, then for any $\varepsilon > 0$ there exists $\delta > 0$ such that $0 < |x| < \delta$ implies $|f(\sin x) c| < \varepsilon$. We may assume w.l.o.g. that $\delta < \pi/2$. The idea is to put $y = \sin x$, i.e., $x = \sin^{-1} y$. Take $\delta_1 = \sin \delta \in (0, 1)$. Since $\sin(\cdot)$ is strictly increasing on $(-\pi/2, \pi/2)$, for $y = \sin x$ we can say that $0 < |\sin x| < \sin \delta \implies 0 < |x| < \delta$ which further implies that $|f(\sin x) - c| < \varepsilon$. Thus, for $0 < |y| < \delta_1 = \sin \delta$ we have $|f(y) - c| < \varepsilon$.
- 4. The key idea is to take logarithm (with base e, of course!). Let us denote

$$A_n = \tan^n \left(\frac{\pi}{4} + \frac{1}{n}\right), \ n \ge 1.$$

Observe that

$$\lim_{n \to \infty} \log A_n = \lim_{n \to \infty} n \log \tan \left(\frac{\pi}{4} + \frac{1}{n}\right)$$
$$= \lim_{n \to \infty} n \log \left(\frac{1 + \tan \frac{1}{n}}{1 - \tan \frac{1}{n}}\right)$$
$$= \lim_{n \to \infty} n \log \left(1 + \frac{2 \tan \frac{1}{n}}{1 - \tan \frac{1}{n}}\right)$$
$$= \lim_{n \to \infty} n \frac{2 \tan \frac{1}{n}}{1 - \tan \frac{1}{n}}$$
$$= \lim_{n \to \infty} \frac{2 \tan \frac{1}{n}}{\frac{1}{n}} = 2.$$

Since $x \mapsto e^x$ is a continuous map, the desired limit is

$$\lim_{n \to \infty} A_n = \lim_{n \to \infty} e^{\log A_n} = e^2.$$

5. Fix any $y \in \mathbb{R}$. For any natural number $n \ge 1$ we can use the given property with $x_1 = y - \frac{1}{n}$ and $x_2 = y + \frac{1}{n}$ to say that there exists $y_n \in [y - \frac{1}{n}, y + \frac{1}{n}]$ such that $f(y_n) = g(y_n)$. Since

$$y - \frac{1}{n} \le y_n \le y + \frac{1}{n}$$
 for every $n \ge 1$,

Sandwich applies and tells us that $y_n \to y$ as $n \to \infty$. But we have

$$f(y_n) = g(y_n)$$
 for every $n \ge 1$.

Letting $n \to \infty$ here, and using the continuity of f and g we can conclude that

$$f(y) = \lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} g(y_n) = g(y)$$