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Suppose xn is a sequence such that lim
n→∞

xn exists. Let the limit be x. Then we know that

the terms are getting closer and closer to x. Now this also implies that the terms get closer

and closer to each other. This intuition is made precise in the following theorem.

Theorem. If {xn}n≥1 is a sequence such that lim
n→∞

xn exists, then for every ε > 0, there

exists an N ∈ N such that |xm − xn| < ε holds for every m,n ≥ N.

Proof. Let the limit be x. Fix any ε > 0. Since lim
n→∞

xn = x, so there exists an N ∈ N such

that |xn − x| < ε/2 holds for every n ≥ N. Then, for any m,n ≥ N we have

|xm − xn| = |(xm − x)− (xn − x)| ≤ |xm − x|+ |xn − x| <
ε

2
+
ε

2
= ε,

which is exactly what we wanted to show. �

The notion for the terms of a sequence to get closer and closer to each other, as described

in the above theorem, has a name:

Definition. We say that {xn}n≥1 is a Cauchy sequence if it has the following property: for

every ε > 0, there exists an N ∈ N such that |xm − xn| < ε holds for every m,n ≥ N.

Thus, the last theorem can be restated as follows:

“Every convergent sequence must be a Cauchy sequence.”

Next, we are interested to find whether the converse of the above theorem is true. That is,

given a Cauchy sequence, we want to know whether it must be convergent (or not). Let us

look at a simpler question first: is it necessary that every Cauchy sequence is bounded? If

it seems somewhat ‘trivial’ to you then let me (try to) confuse you. Suppose a sequence xn

satisfies the following property: for every ε > 0, there exists an N ∈ N such that for every

n ≥ N, |xn+1 − xn| < ε holds. Is it necessary that xn is bounded?

The given property is telling us that the consecutive differences are getting smaller and

smaller. So your intuition might (mis)lead you to the conclusion that the terms are getting

clustered in a bounded region. Actually it turns out that such a sequence need not be

bounded. Here is a counter-example: take xn =
√
n for n ≥ 1. Then,

0 < xn+1 − xn =
√
n+ 1−

√
n =

n+ 1− n√
n+ 1 +

√
n
<

1

2
√
n
.
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Therefore the sequence xn has the property that the consecutive difference |xn+1 − xn| is

getting smaller and smaller as n increases, but the sequence is unbounded.

Now let us come back to the question for Cauchy sequences. You must have noticed that

the property that a Cauchy sequence has, is much more stronger than the property given

in the last question. (Demanding |xm − xn| < ε for every m,n ≥ N is much more than

demanding only |xn+1 − xn| < ε for every n ≥ N.) And it turns out that for xn to be a

Cauchy sequence, it must be bounded:

Theorem. If {xn}n≥1 is a Cauchy sequence then it must be bounded.

Proof. Fix ε to be 1. There exists an N ∈ N such that |xm − xn| < ε holds for every

m,n ≥ N. So, for every m ≥ N we have |xm| ≤ |xm − xN | + |xN | < 1 + |xN |. Taking

M = max{|x1|, |x2|, · · · , |xN−1|, |xN |+ 1}, we get |xm| ≤M for all m ≥ 1. �

You should notice that the proof for “every Cauchy sequence is bounded” is very similar

to the proof for “every convergent sequence is bounded”. Let us now move to the bigger

question: is it necessary that every Cauchy sequence is convergent?

Before revealing the answer, let me tell you how to approach it. Suppose xn is a Cauchy

sequence. Then the last theorem says that it must be bounded. Now, being bounded does

not imply it is convergent; but what can be said? We know that every bounded sequence

has a convergent subsequence (Bolzano-Weierstrass theorem). Let {xn}n≥1 have a convergent

subsequence {xnk
}k≥1 which converges to x. Then the terms of the subsequence are getting

closer and closer to x. And the original sequence being Cauchy, the other terms are getting

closer and closer to the terms of this subsequence. Therefore, we can see that the other

terms are also getting closer and closer to x! Of course we shall make this argument precise

by bringing epsilons; but it is also important for you to understand it intuitively.

Theorem. If {xn}n≥1 is a Cauchy sequence then it must be convergent.

Proof. Since xn is Cauchy, it must be bounded. Hence it has a convergent subsequence. Let

{xnk
}k≥1 be that convergent subsequence, which converges to x. Now, fix any ε > 0. There

exists k0 ∈ N such that |xnk
− x| < ε/2 holds for every k ≥ k0. And the sequence being

Cauchy, there exists an N ∈ N such that |xm− xn| < ε/2 holds for every m,n ≥ N. Now, as

the indices nk are strictly increasing, there exists some nk > N with k ≥ k0. Then, for every

m ≥ N we have |xm − xnk
| < ε/2 as well as |xnk

− x| < ε/2. This gives us |xm − x| < ε for

every m ≥ N, which completes the proof. �

Thus, we have shown that a sequence is Cauchy if and only if convergent. Now you might

ask what we gain by redefining the class of convergent sequences. The main reason is that,

sometimes it is easier to show that a sequence is Cauchy than to show that it is convergent.
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This is illustrated by the following theorem.

Theorem. Suppose xn is a sequence satisfying |xn+1 − xn| ≤ λ|xn − xn−1| for every n > 1,

where 0 < λ < 1 is fixed. Then, xn must converge.

Proof. We shall show that xn is a Cauchy sequence. First observe that

|xn+1 − xn| ≤ λ|xn − xn−1| ≤ λ2|xn−1 − xn−2| ≤ · · · ≤ λn−1|x2 − x1|

which holds for all n ≥ 1. Next, let m > n.

|xm − xn| ≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|

≤ (λm−2 + λm−3 + · · ·+ λn−1)|x2 − x1|

= λn−1|x2 − x1|(1 + λ+ λ2 + · · ·+ λm−n−1)

≤ λn−1|x2 − x1|(1 + λ+ λ2 + · · · ) = λn
|x2 − x1|
λ(1− λ)

.

Note, in the last step, we utilised 0 < λ < 1. Thus, we have shown that for every m > n,

|xm−xn| ≤ c ·λn where c = |x2−x1|/λ(1−λ). Now, as 0 < λ < 1, we know that lim
n→∞

λn = 0.

Therefore for every ε > 0, there exists N ∈ N such that c · λn < ε holds for every n ≥ N.

Then, it follows that for every m,n ≥ N, |xm − xn| < ε. �

Try to prove the above theorem without using Cauchy criterion. You will understand how

Cauchy criterion acts as an indispensable tool for showing convergence in some problems like

the one above.

Next, we look at some other applications of Cauchy sequences.

Problem. Suppose that a1 = 1 and an+1 = 1 + 1/an for all n ≥ 1. Show that lim
n→∞

an exists

and also find this limit.

Solution. From an+1 = 1 + 1/an and an = 1 + 1/an−1, we get |an+1 − an| =
|an − an−1|
anan−1

.

Note that we used an > 0 for all n ≥ 1 (which is quite obvious from the definition of an).

Next, we shall give a lower bound on anan−1. (In order to arrive at something of the form

|an+1 − an| ≤ λ|an − an−1| where 0 < λ < 1.) First observe that an ≥ 1 for all n ≥ 1. Hence,

anan−1 = 1 + an−1 ≥ 2 for every n ≥ 1. Therefore, we get

|an+1 − an| =
|an − an−1|
anan−1

≤ |an − an−1|
2

, for all n > 1.

Now, applying the previous theorem we get that lim
n→∞

an exists. Let this limit be `. Letting

n → ∞ in the recursion an+1 = 1 + 1/an, we get ` = 1 + 1/`. This gives ` = (1 ±
√

5)/2.

Since an ≥ 1 for all n ≥ 1, the limit can’t be less than 1. Hence we conclude that lim
n→∞

an =

(1 +
√

5)/2. �
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Comment. In the last problem, we evaluate first few terms of the sequence:

a1 = 1, a2 = 2, a3 =
3

2
, a4 =

5

3
, a5 =

8

5
, a6 =

13

8
, · · · .

Does this ring a bell? If you know Fibonacci numbers1, you might have guessed that an =

Fn+1/Fn. In fact this is true and can be easily proved by induction. Therefore, what we have

actually shown (in the last problem) is that,

lim
n→∞

Fn+1

Fn

=
1 +
√

5

2
.

Can you prove this in some other way, without using Cauchy sequences?

Problem. For n ≥ 1 define Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
. Show that Hn is unbounded.

Solution. Observe that Hn is an increasing sequence. So in order to prove that it is un-

bounded, it suffices to show that it does not converge. Since every convergent sequence is

Cauchy, it is enough show that Hn is not Cauchy. Can you tell what is meant by saying a

sequence is not Cauchy ? If we just negate the definition of a Cauchy sequence, we get:

A sequence xn is not Cauchy if there exists ε0 > 0 such that for every N ∈ N, there exists

m,n ≥ N such that |xm − xn| ≥ ε0.

Intuitively this means that there are infinitely many terms of the sequence which are at least

ε0 apart, for some ε0 > 0. In our case, we illustrate such terms of the sequence:

H2n −Hn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
≥ 1

2n
+

1

2n
+ · · · (n many) =

1

2
.

So, we take ε0 = 1/2. For any N ∈ N, we take n = N and m = 2N which gives |Hm−Hn| ≥ ε0

and we are through. �

Problem. Let xn be any sequence. For n ≥ 1, define Sn =
n∑

k=1

xk and Tn =
n∑

k=1

|xk|. If

lim
n→∞

Tn exists then show that lim
n→∞

Sn must exist as well.

Solution. Fix any ε > 0. Since Tn converges, it is also Cauchy. Hence there exists N ∈ N
such that for every m,n ≥ N, |Tm − Tn| < ε holds. Now, pick any such m,n. Say m > n.

Then, observe that

|Sm − Sn| =
∣∣∣ m∑
k=n+1

xk

∣∣∣ ≤ m∑
k=n+1

|xk| = Tm − Tn < ε.

This proves that the sequence Sn is Cauchy and hence convergent. �
1n-th Fibonacci number Fn is defined as: F1 = F2 = 1, Fn+1 = Fn + Fn−1 for all n ≥ 1.
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Exercises

1. Suppose xn is a sequence satisfying |xn+1 − xn| ≤
1

2n
for all n ≥ 1. Show that lim

n→∞
xn

exists.

2. For n ≥ 1, define xn =
n∑

k=1

sin k

k2
. Show that {xn}n≥1 is a Cauchy sequence.

3. Let {xn}n≥1 be a sequence satisfying |xn+2 − xn+1| < |xn+1 − xn| for every n ≥ 1. Is it

necessary that {xn}n≥1 converges?

4. Let {xn}n≥1 be a Cauchy sequence. Is it necessary that there exists some λ ∈ (0, 1) such

that |xn+1 − xn| ≤ λ|xn − xn−1| holds for every n > 1?

5. Suppose that 1 ≤ x1 ≤ x2 ≤ 2 and define xn+2 =
√
xn+1xn for n ≥ 1. Show that,

(a) xn+1/xn ≤ 2 holds for every n ≥ 1.

(b) |xn+2 − xn+1| ≤ 2
3
|xn+1 − xn| holds for every n ≥ 1.

(c) Hence conclude that lim
n→∞

xn exists.

6. Let f : R → R be a function satisfying |f(x) − f(y)| ≤ 1

2
|x − y| for all x, y ∈ R. Show

that the equation f(x) = x has a unique solution.

7. Take any a > 0 and define a sequence {xn}n≥1 as follows: start with any x1 > 0 and

set xn+1 = a/(1 + xn) for every n ≥ 1. Show that limn→∞ xn exists, and is a root of the

equation x2 + x = a.
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