Problems on L'Hôpital's rule

Aditya Ghosh

1. Evaluate the following limits

$$
\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{\log x}\right), \quad \lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}, \quad \lim _{x \rightarrow 0+}(\cos 2 x)^{1 / x^{2}} .
$$

2. Determine, with proof, the value of $\lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x-\sin x}$ and $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$.
3. Evaluate $\lim _{x \rightarrow 0+} x^{x}$ and hence justify what should be the convention for the value of 0^{0} (in order to make the function x^{x} right-continuous at 0).
4. Let f, g be functions defined on $[a, b]$ and $f(a)=g(a)=0$. Suppose that f, g are both differentiable at a. Furthermore, assume that $g(x) \neq 0$ for $a<x<b$ and $g^{\prime}(a) \neq 0$. Show that $\lim _{x \rightarrow a} f(x) / g(x)$ exists and equals $f^{\prime}(a) / g^{\prime}(a)$.
5. Let $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$, let $f(0)=0$, and let $g(x)=x^{2}$ for $x \in \mathbb{R}$. Show that $\lim _{x \rightarrow 0} f(x) / g(x)$ does not exist. Find out why the result of the last problem does not hold here.
6. Let $f(x)=x^{2}$ for x rational, let $f(x)=0$ for x irrational, and let $g(x)=\sin x$ for $x \in \mathbb{R}$. Find out why we can't use the standard L'hôpital's rule for this problem. Use one of the above problems to evaluate $\lim _{x \rightarrow 0} f(x) / g(x)$.
7. Let $f(x)=x^{2} \sin (1 / x)$ for $x \neq 0$, let $f(0)=0$, and let $g(x)=\sin x$ for $x \in \mathbb{R}$. Show that $\lim _{x \rightarrow 0} f(x) / g(x)=0$ but that $\lim _{x \rightarrow 0} f^{\prime}(x) / g^{\prime}(x)$ does not exist.
8. For each of the following examples, explain why L'hôpital's rule can't be applied to write $\lim _{x \rightarrow \infty} f(x) / g(x)=\lim _{x \rightarrow \infty} f^{\prime}(x) / g^{\prime}(x)$.
(a) $f(x)=4+1 / x$, and $g(x)=2+1 / x$.
(b) $f(x)=x+\sin x$, and $g(x)=x$.
(c) $f(x)=x+\sin x \cos x$, and $g(x)=f(x) e^{\sin x}$.
9. Let f be a differentiable function such that

$$
\lim _{x \rightarrow \infty}\left(f(x)+f^{\prime}(x)\right)=\ell \in \mathbb{R}
$$

Show that $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$. If we drop the assumption that ℓ is finite, will the conclusion still hold?
10. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that, $\lim _{x \rightarrow \infty} f(x)=2019$. Show that if $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists then it must be zero. Is it necessary that $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists?
11. Determine, with proof, the value of

$$
\lim _{x \rightarrow \infty} x\left(\left(1+\frac{1}{x}\right)^{x}-e\right)
$$

12. Suppose that f is twice differentiable in a neighbourhood of c. Show that

$$
\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}}=f^{\prime \prime}(c) .
$$

13. Suppose that f is a function such that the limit

$$
\lim _{h \rightarrow 0} \frac{f(c+h)+f(c-h)-2 f(c)}{h^{2}}
$$

exists and is finite. Does this imply that $f^{\prime \prime}(c)$ exists and equals the above limit?
14. Show that for any polynomial $P(x)$ with real coefficients, $\lim _{x \rightarrow \infty} P(x) / e^{x}=0$.
15. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=e^{-1 / x}$ for $x>0$ and $f(x)=0$ for $x \leq 0$. Determine, with proof, the value of $f^{(n)}(0)$ for every $n \geq 1$. (Here $f^{(n)}(0)$ denotes the n-th derivative of f, evaluated at 0 .)
16. Suppose that f is a function such that $f^{\prime \prime}(a)$ exists. Define a quadratic polynomial $p(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a)(x-a)^{2} / 2$. Show that

$$
\lim _{x \rightarrow a} \frac{f(x)-p(x)}{(x-a)^{2}}=0
$$

(Note that in order to have f twice differentiable at $x=a$, we need $f^{\prime}(x)$ to be defined in a open neighbourhood of a, i.e. f must be differentiable in a open neighbourhood of a.)

For more practice problems, visit: https://www.math24.net/lhopitals-rule/ and http:
//math.cmu.edu/~bkell/lhopital.pdf.

